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Abstract
Collective motion is a promising field that studies how

local interactions lead groups of individuals to global
behaviors. Biologists try to understand how those sub-
jects interplay in nature, and engineers are concerned
with the application of interaction strategies to mobile
vehicles, satellites, robots, etc. This paper introduces a
collision avoidance mechanism to a model of particles
with phase-coupled oscillators dynamics for symmetric
circular formations. The mobile agents must establish
the formation without colliding with each other.
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1 Introduction
Models of phase-coupled oscillators are widely used

in applications of collective motion [Sepulchre et al,
2007; Jain and Ghose, 2017]. One of the most proem-
inet paradigm of the field of phase-coupled oscillators
is the Kuramoto Model [Kuramoto, 1984], in which
the oscillators’ interactions are mediated via sinusoidal
coupling. This model opened possibilities for studies
on dynamical systems’ synchronization [Acebrón et al,
2005].
A well known model for collective motion was pro-

posed by [Vicsek et al, 1995] in which depending on
the density of the particles and the noise amplitude, the
particles converge to an ordered motion.
[Sepulchre et al, 2007] developed a model to lead

particles with coupled-oscillator dynamics to synchro-
nized and balanced states, showing parallel and circular
formations, with symmetric patterns for the latter case.
[Jain and Ghose, 2017] employed what they called ref-
erence velocity to build a steering control law to drive
the circular formation centroid to desired coordinates.
These models can be used in data collection, surveil-
lance and other applications of collective motion.

In this work we improve the control for symmetric cir-
cular formations proposed in [Sepulchre et al, 2007]
by adding a collision avoidance mechanism, based on
balanced states of Kuramoto model. The purpose is to
guarantee that the agents do not collide with the neigh-
bors in their vicinity.

2 Particles with coupled-oscillator dynamics
The original model aims to lead particles to collective

behaviors, depending on its parameters.
Particles represent N identical individuals with uni-

tary mass and velocity. They maneuver according to
laws of interaction and at constant speed. Each particle
position is given by rk = xk + iyk ∈ C, the direction
of the velocity vector by eiθk = cos θk + i sin θk, and
phase θk ∈ R for k = 1, . . . , N . The phase represents
the heading angle of the particle.
Let rrr .

= (r1, . . . , rN )T ∈ CN be the vector of particle
positions, θθθ .

= (θ1, . . . , θN )T ∈ TN the velocity vec-
tor, and uk(rrr,θθθ) the maneuver control (feedback con-
trol).
The particle model is the following

ṙk = eiθk (1a)

θ̇k = uk(rrr,θθθ) (1b)

When uk = 0 the particles move in a straight line to-
wards their initial phase (heading angle) θk(0). Still,
when uk = ω0, i.e., if not coupled with others, parti-
cle k moves in circular trajectories centered at ck with
radius |ω0|−1, as shown in Equation 2.

ck
.
= rk + ω−10 ieiθk (2)

The center of mass of the group is



R
.
=

1

N

N∑
j=1

rj (3)

When θk = θj for all pairs j and k, particles are
synchronized. On the other hand, if the phases can-
cel each other with opposite values, they are said to be
balanced. These two extreme states are measured with
the Kuramoto order parameter [Strogatz, 2000], given
by Equation 4.

pθ
.
=

1

N

N∑
j=1

eiθj (4)

with eiθk = cos θj + i sin θj , and 0 ≤ pθ ≤ 1. The
order parameter corresponds to the velocity of the par-
ticles center of mass, since Ṙ = pθ. When |pθ| = 0,
they are in a balanced state with the center of mass in
a steady position. For |pθ| = 1 they are synchronized
and the center of mass moves at unit velocity.
The rotation centroids of particles are represented by

the vector ccc .= (c1, · · · , cN ) ∈ C. A circular formation
is a relative equilibrium regime in which all particles
travel around the same circle, i.e., ck = cj for all pairs
j and k.
Consider M a positive integer, divisor of N . A
(M,N) pattern is a symmetric arrangement of N
phases divided into M clusters. M = 1 corresponds
to the synchronized state in which all particles have
the same heading angle (phase), and the (N,N) pattern
stands for phases uniformly spaced around the unitary
circle (balanced state).
The control to achieve symmetric circular formations

with all-to-all interaction [Sepulchre et al, 2007] is

uk = ω0(1 +K0

〈
eiθk , Pkccc

〉
)− ∂UM,N

∂θk
(5)

for K0 > 0, and potential gradient

∂UM,N

∂θk
=

1

N

M∑
m=1

N∑
j=1

Km

m
sin(m(θj − θk)) (6)

with Pk the projection matrix k-th row. This matrix is
composed by pii = N−1

N and pij = −1
N for i 6= j, as

shown in Equation 7.
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...
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 (7)

Figure 1 shows an example with N = 12 particles
with random initial conditions, and all-to-all interac-
tion.

(a) M = 1 (b) M = 2

(c) M = 3 (d) M = 4

(e) M = 6 (f) M = 12

Figure 1. Symmetric circular formation with control 5 for all-to-all
interaction. Configuration: N = 12,K = 0.1 and ω0 = 0.5.

[Sepulchre et al, 2007] developed a simpler model, in-
spired in Kuramoto model, in which the particles phase
are coupled with a sinusoidal function as shown in
Equation 8.

θ̇k = ω0 +
K

N

N∑
j=1

sin(θk − θj) (8)

As in the symmetric circular control (Equation 5), the
same natural frequency ω0 is used for all oscillators.
When K > 0 the particles achieve a balanced state,
with the phases uniformly distributed around the uni-
tary circle, and consequently leading the order parame-
ter to zero. Motivated by this behavior, we propose the
introduction of a repulsion term rep in Equation 9, so
that the phases of close range particles are adjusted to
avoid collision.



uk = ω0(1 +K0

〈
eiθk , Pkccc

〉
)− ∂UM,N

∂θk
+ rep (9)

where K0 must be positive, Kr > 0 is the strength of
the repulsion, and rep is defined as follows

rep =
Kr

n(N (rk))

∑
j∈N (rk)

sin(θk − θj) (10)

with N (rk)
.
= {j ∈ N | ‖ rk − rj ‖< d} the set

of neighbors of agent k, and n(N (rk)) the number of
neighbors in the setN (rk). An agent belongs toN (rk)
if it is within a predefined radius d, centered at rk.
The idea behind the repulsion term of Equation 10 is

that the agent k tries to balance its heading angle with
its closest neighbors N (rk). This results in an adjust-
ment of agent’s k heading angle to the opposite direc-
tion in relation to N (rk).
Figure 2 shows simulation results with control 9, and

parameters N = 12, K = 0.1, Kr = 0.2, ω0 = 0.05
and d = 5. The bigger the agents are the higher the
radius d and/or the gain Kr must be, as they have to
start to avoid the neighbors before they reach a criti-
cal distance. The parameters d and Kr state the initial
distance considered for the usage of rep and also the
maneuver intensity.

3 Conclusions
For real applications, namely mobile robots, unmaned

aerial vehicles, and others, one needs to define a colli-
sion avoidance mechanism. For this purpose, we added
term, based on the Kuramoto model, in a model of
phase-coupled oscillators for symmetric circular for-
mations. When an agent has neighbors in its vicinity,
this term tries to balance its phase with them in such a
way that it goes to their opposite direction.
The concept of vicinity is defined by a radius around

the agent and its size depends also on the agents size,
because of the reaction time, before an imminent col-
lision. The bigger the agents are the higher the radius
must be, as they have to start to maneuver before they
reach a critical distance.
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