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Abstract: An approach to modeling and optimization of controlled dynamical systems 
with distributed elastic and inertial parameters is considered. The general method of 
integrodifferential relations (IDR) for solving a wide class of boundary value problems is 
developed and criteria of solution quality are proposed. A numerical algorithm for 
discrete approximation of controlled motions has been worked out and applied to design 
the optimal control lаw moving an elastic system to the terminal position and minimizing 
the given objective function. The polynomial control for plane motions of a homogeneous 
cantilever beam is investigated. The optimal control problem of beam transportation from 
the initial rest position to given terminal states, in which the total mechanical energy of 
the system reaches its minimal value, is considered.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
The elastic properties of the elements of structures 
affect their dynamical behavior substantially. Some 
parts of the mechanical systems with distributed 
parameters may be considered as elastic rods with 
given stiffness and inertia characteristics. Boundary-
value problems of mathematical physics arise in 
simulation of the motions of these systems. One of 
the most widespread approaches to the solution of 
these problems is the method of separation of 
variables. 
 
The investigation of systems with distributed 
parameters leads to a wide class of problems for 
which a large number of approaches is developed. 
The regular perturbation method (the small 
parameter method) for the investigation of the 
dynamics of weakly nonuniform thin rods with 
arbitrary distributed strain and different boundary-
value conditions is proposed by Akulenko and 
Kostin (1992). Based on the classical Rayleigh–Ritz 
approach, a numerical-analytic method of fast 
convergence that allows one to obtain values of the 
desired quantities and functions with arbitrary 
bending stiffness and linear density of the rod that 
are sufficiently precise (Akulenko, et al. 1995). In 
modeling elastic systems, the methods of finite-
dimensional approximation, which reduce a 
boundary value problem for partial differential 
equations to a system of ordinary differential 

equations, for example, the decomposition method 
and the regularization method, are widespread. 
 
In this paper, the method of integro-differential 
relations, developed by Kostin and Saurin (2006); 
(2006a,b,c,d), is applied to finding an optimal control 
for the movement of elastic systems with distributed 
parameters. The algorithms of optimization for 
dynamical characteristics of uniform straight thin 
beam motions are constructed based upon the MIDR. 
Analysis and comparison of the results obtained by 
using this method for a polynomial control and a 
quadratic cost functional are performed. 
 

2. STATEMENT OF THE PROBLEM 
 
Consider the plane controlled motions of a 
homogeneous rectilinear elastic beam. One end of the 
beam is free, and the other is clamped on a truck that 
can move along a horizontal plane (see Fig.1). In the 
undeformed state, the beam is fixed in a vertical 
position. The control action on the beam is the 
horizontal acceleration  of the truck. Initially, the 
shape of the beam lateral deflection (displacement) 

 and its relative linear momentum density  are 
given in a coordinate system tied to the truck moved 
at the velocity . The location of the truck is 
specified by 

u

w p

v
x  in a stationary coordinate system; 

hereinafter, x v=  and v . Without loss of 
generality, it can be assumed that the coordinate and 
velocity of the truck are initially zero. 

u=

     



 

 
 

Fig. 1. Beam clamped on a truck 
 

The equations of beam motions have the form 
 

( ), (0, ),p m u t y lρ′′+ = − ∈  (1) 
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under the boundary conditions at  0,y l=
( ,0) ( ,0) 0,
( , ) ( , ) 0;
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′= =
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and the initial conditions at  0t =
 

(0, ) ( ), (0, ) ( ).w y f y p y g y= =  (4) 

 

Here,  is the bending moment in the beam cross 
section;  and 

m
l ρ  are the length and linear density of 

the beam, respectively;  is its flexural rigidity; 
and  is the terminal time instant of the control 
process. The dotted symbols denote the partial 
derivatives with respect to , and the primed 
symbols stand for the partial derivatives with respect 
to . It is worth noting that the initial conditions 

EI
T

t

y (4) 
and boundary conditions (3) should be compatible 
(for example, , , (0) 0f = (0) 0f ′ = ( ) 0g l′′ = , 

). ( ) 0g l′′′ =
 
The problem is to find an optimal control  that 
moves the truck from its initial to terminal states in 
the given time  

( )u t

T
 

( ) , ( ) ,f fx T x v T v= =  (5) 
 

and minimizes a objective function [ ]J u  in the class 
 of admissible controls: U

 
[ ] min .J u

u U
→

∈
 (6) 

 

To solve the boundary value problem (1)–(4), we 
apply the method of IDR, described by Kostin and 
Saurin 2005, in which some strict local equalities are 
replaced by an integral relation. In this case, it is 
possible to reduce problem (1)–(4) to a variational 
problem. If a weak solution , , and p∗ m∗ w∗  exists 
then the following functional  under local 
constraints 

Φ
(1), (3), (4) reaches its absolute minimum 

on this solution 
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Note that the integrand ϕ  in (7) has the dimension of 
the energy density and is nonnegative. Hence, the 
corresponding integral is nonnegative for any 
arbitrary functions , , and  ( ). p m w 0Φ ≥

 
3. AN APPROXIMATION ALGORITHM 

 
To find an approximate solution of the optimization 
problem defined by Eqs. (1), (3)–(7) we use a 
polynomial representation of the unknown functions. 
The functions , , and  are approximated by 
bivariate polynomials 

p m w
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The control u  is restricted to a set of time 
polynomials 
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Here , , , and  are unknown real 
coefficients. 

ijp ijm ijw iu

 
The basis functions are chosen so that the 
approximations can exactly satisfy the boundary 
conditions (3), initial polynomial conditions (4), and 
the equation of motion (1) by suitably selected 
integers , , , and . pN mN wN uN
 
The resulting finite-dimensional unconstrained 
minimization problem (7) yields an approximate 
solution , ,  for an 
arbitrary control 

( , , )p t y u∗ ( , , )m t y u∗ ( , , )w t y u∗

u U∈ , where U  is the set of time 
polynomial functions with a given degree . The 
optimal control  is determined from condition 

uN
( )u t∗

(6). Let us consider a functional [ ]J u  quadratic with 
respect to the parameters  of the polynomial iu



control law (total mechanical energy of the beam at 
the terminal time ) T
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The corresponding optimization problem is reduced 
to a system of linear equations. 

 
4. NUMERICAL EXAMPLE 

 
For numerical modeling, the following dimensionless 
parameters , 1l = 1ρ = , , , 1EI = 2T = 0fv = , and 

 are used. An optimal control (in the sense of 
the functional 

1fx =
J  in (10)) for the beam motion is 

analytically constructed for the following integers in 
(8): , , and . In the case 
when , the control  in 

20pN = 21mN = 23wN =

1uN > u (9) contains 1uN −  
unknown parameters, which are used for minimizing 
J . The optimal controls obtained by the IDR 
method for  are shown in Fig. 2 (dashed 
and solid lines). The optimal values of 

3, 5uN =
J  are equal 

to , and , respectively.  -32.24 10× -52.79 10×

 
 

Fig. 2. Optimal control . u
 

 
 

Fig. 3. Distribution of local solution error ϕ . 

 

The value of the functional  can be considered as 
an integral performance criterion for the optimal 
solution whereas the integrand 

Φ

ϕ  in (7) is a local 
quality characteristic. Figure 3 shows the distribution 
of the function ( , )t yϕ  for . It can be seen that 
its value is small almost everywhere, except for the 
vicinity of 

5u =N

0t =  with its maximum at the point 
1y = . For the defined parameters the value of the 

functional is equal to Φ = . As the number 
of free parameters of the polynomial control in the 
optimization problem 

75,34 10−×

(1), (3)–(7) increases, the total 
energy of the beam at the terminal time reduces 
considerably. In the case of four free control 
parameters, the value of J  can be reduced by more 
than 5000 times. 

 
5. CONCLUSIONS 

 
In this paper, the problem of constructing the 
controlled motions of a uniform straight elastic rod 
mounted on a moving vehicle was considered. The 
algorithm of optimization based on a regular method 
of integro-differential relations for constructing the 
control, which steers the system to the state of 
minimum total energy at a final time instant, was 
developed. For two-dimensional motions of an 
elastic rod, the case of a polynomial control was 
considered. The results obtained by using the integro-
differential approaches are analyzed. 
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