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Abstract
Piezoelectric actuators are applied in many mecha-

tronic disciplines, from combustion engine injection
systems to active structure vibration attenuation. This
paper describes a nonlinear piezo stack actuator mod-
eling and identification approach for flexible struc-
ture actuation. The piezo’s inherent hysteresis be-
haviour is modeled by the widely applied Preisach
model and is identified in the structure-mounted config-
uration using a frequency-averaging technique to mask
out frequency-dependent structure response in the hys-
teresis identification. Moreover, linear structure identi-
fication, simulation, and experimental results are given.
The experimental setup under study is a large-scale
stack actuator, console-mounted on a steel truss with a
low first natural frequency at about20Hz. This system
is used for model validation and to measure the per-
formance of the system inversion, which can be seen
as feed-forward control method. Feedback control can
subsequently be supported and enhanced by eliminat-
ing the system nonlinear behaviour with the inverse
hysteresis model, improving the control system’s per-
formance.
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1 Introduction
Piezoelectric stack-type actuators have distinct char-

acteristics, such as high force generation at low stroke
lengths, that make them suitable for applications in stiff
structures or fast systems, such as vibration control
of flexible mechanical structures. Using the recipro-
cal piezoelectric effect, stack-type piezo actuators ex-
pand due to an applied input-voltage. If the actuator
is mounted in a flexible structure, corresponding forces

are generated, which depend both on the actuator’s and
the structure’s bulk stiffness, but as well on the vibra-
tion state of the structure. In this paper, the focus is
drawn on the nonlinear hysteresis behaviour observed
in the actuator’s voltage - force relation.
As is pointed out in (Mayergoyz, 1991, p.4), ”the phys-
ical origin of hysteresis is the multiplicity of meta-
stable states”. For a piezoelectric material, this can
be related to the occurrence of polarization domain
switching at changing voltage.
The present study considers a piezo stack-type actua-
tor mounted in a flexible structure. First the model-
ing approach will be presented, followed by a discus-
sion on implementation and identification aspects of
the widely-applied Preisach hysteresis model for our
system. Then, experimental results regarding system
and hysteresis parameter identification and the mea-
sured performance of hysteresis inversion will be given
and followed by a concluding remark.
Many piezo actuator hysteresis modeling approaches
exist, see (Ge and Jouaneh, 1996), (Hu and Mrad,
2003), (Hughes and Wen, 1997), (Mrad and Hu, 2002),
(Song and Li, 1999), and (Yuet al., 2002). The
most frequently used model is the Preisach-model,
which was originally proposed and mostly applied for
magnetic hysteresis phenomena. However, it proved
also suitable to describe many other types of hystere-
sis, such as those observed in piezoelectric materials.
A comprehensive study on Preisach-type models and
their extensions is given in (Mayergoyz, 1991).

2 Nonlinear model of piezo actuator in flexible
structure

The considered piezo actuator is mounted in a console
on a steel truss as flexible structure. Its generated force
can be modeled by two effects. Assuming the actua-
tor to be freely expandable, an applied input voltageU

causes it to elongate byxU (termed ”free elongation”).



However, due to its mounting in the flexible structure,
the appearing reaction forceF acts on the actuator and
thereby compresses it again byxF (see Fig.1). While
these relations can be modeled linearly at small volt-
age, hysteretic nonlinear behavior is visible at high in-
put amplitudes for the voltage - elongation or force re-
lations. The widely-applied Preisach hysteresis model
is chosen in this work.
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Figure 1. Nonlinear piezo model

3 The Preisach hysteresis model and its implemen-
tation

In the following, a short overview on the Preisach for-
mulation using Everett surfaces or maps is given. For a
detailed and formal treatment, see (Mayergoyz, 1991)
and more recent survey articles.

3.1 The classical Preisach model - a short overview
The classical Preisach model is able to describe static

general hysteresis behaviour if two main properties are
fulfilled: the wiping-out property (i.e. only the last
dominating extremal input values have an effect on the
output, no other / earlier inputs) and the congruency
property (minor loops of the same input variation are
of the same shape). The hysteresis is modeled by a
weighted parallel connection of simple 2-point relays
as ”hysterons”. The hysteresis-inherent signal mem-
ory is essentially reduced to the dominating extremal
values (minima and maxima) of the input signalu(t),
which thus entirely define system behaviour. The hys-
teresis output is described by a weighted integral of a
functionµ(uα, uβ) (often termed ”Preisach function”)
over the parameter domain(uα, uβ):

f(t) =

∫∫
uα≥uβ

µ(uα, uβ)γuαuβ
u(t)duαduβ, (1)

whereγuα,uβ
is the simplest hysteresis operator, rep-

resented by a rectangular loop (a 2-point relay switch-
ing ”up” at uα and ”down” atuβ , see e.g. (Mayergoyz,
1991)). The weightingµ(uα, uβ), the Preisach func-
tion, has to be determined directly or indirectly through
measurements of a real system. So-called ”first-order
descent” (FOD) curves have to be measured, which
consist of a monotonous increasing branch from the
minimal input valueumin to uα, yielding a final out-
put value offα, as well as a monotonous decreasing

branch fromuα to uβ ≤ uα with corresponding out-
putfαβ . In the parameter space(uα, uβ) the so-called
Everett surface is defined as:

E(uα, uβ) =
1

2
(fα − fαβ) (2)

Due to symmetry assumptions it is sufficient to limit
the measurements to the triangleTuα,uβ

: umin ≤

uα ≤ umax, umin ≤ uβ ≤ uα. The connection be-
tween the Everett surface and the Preisach function is

E(uα, uβ) =

∫∫
Tuα,uβ

µ(uα, uβ)duαduβ (3)

and

µ(uα, uβ) = −
∂2E(uα, uβ)

∂uα∂uβ

=
1

2

∂2fαβ

∂uα∂uβ

. (4)

These relation would in principle suffice for experi-
mentally determiningµ(uα, uβ) at given locations, but
evaluating the double integral is computationally ex-
pensive, and differentiating measured data twice am-
plifies ever present measurement noise drastically. An
elegant method, avoiding all numeric calculus, is pre-
sented in (Mayergoyz, 1991, p.32-35) and gives the re-
sult, that the current output valuef(t) can be calculated
as a sum of Everett values of the present input and the
past dominating extremal input values.

3.2 Identification issues and shaping of FOD
curves

Using (2), the Everett surface can be meshed and iden-
tified using an appropriate input sequence. While in
the classical static Preisach formulation the only re-
quirements to these curves are their piece-wise mono-
tonicy and a defined input history, the real piezo hys-
teresis is expected to include slight dynamic effects
(drifts, creep). For a vibration control application,
typically a certain, small frequency range is of inter-
est, so when using a simple static hysteresis model,
it should be identified in or near this operating fre-
quency range. This can be accomplished by defin-
ing the FOD signal peak rise and fall times appropri-
ately. A simple signal shape choice is shown in Fig.2.
However, since we seek to identify the hysteresis be-
haviour in the structure-mounted configuration, the tri-
angular shape is not suitable since it strongly excites
structural vibration modes. As shown in the result sec-
tion, this leads to non-physical artifacts in the Everett
surfaces and thus deteriorates modeling quality. For
this reason, we chose a smooth signal shape as in Fig.3
with good results - the structural modes are much less
excited, artifacts are virtually eliminated. Addition-
ally, we averaged over the retrieved Everett surfaces



from varying peak duration / frequency FOD measure-
ments. These measures enable one to retrieve phys-
ically plausible data of the behaviour of the hysteretic
plant, while masking out structural dynamic effects suf-
ficiently. This can be used advantageously in installed
plants for non-linear hysteresis subsystem identifica-
tion.
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Figure 2. Simple triangu-

lar FOD curve shape
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Figure 3. Smooth rever-

sal sine FOD curve shape

Starting from a minimal voltageumin, the signal is in-
creased to a voltageuα and then decreased touβ < uα.
The output valuefuαuβ

and its parameter space coor-
dinates(uα, uβ) constitute the FOD curve.
In order to measure many FOD curves efficiently, one
such signal peak for each value ofuα is generated and
the system answer during the falling signal edge (de-
creasinguβ) is recorded.
The hard signal limitation atumin and the correspond-
ing non-smooth signal shape at the start and end times
of the peak excites all frequencies, which is more se-
vere with shorter peak times. This limits the identifica-
tion speed, since it requires breaks between the peaks to
let the structure vibrations attenuate sufficiently. Also,
dynamic sensor effects such as the discharging of piezo
patch sensors have to be considered.

3.3 Preisach model inversion
As outlined e.g. in (Kozek and Gross, 2005), the

Preisach model can be inverted by calculating an in-
verse Everett surface, defined by

Einv(fα, fαβ) = uα − uαβ . (5)

Having identified the hysteresis before and computed
the Everett surface for it, this can now be used to com-
pute a mesh of inverse Everett values and the inverse
surface can be entirely defined by interpolation. The
computation of the inverse system output can be done
using the same algorithm, thereby using the inverse Ev-
erett surface values.
The inverted hysteresis model can be used as feed-
forward compensation of the hysteresis nonlinearity.
This would ideally lead to a linear actuator transfer
function of 1, if the hysteretic system strictly obeyed
all prerequisites of the Preisach model such as being
static and fulfilling the wiping-out and the congruency
properties.

4 Experimental results

Figure 4. Actuator mounted in a console on steel truss

The piezo high-voltage stack-type actuator under
study is a Piezomechanik PSt 1000/35/200 V45 and
built of PZT-ceramics material. It can generate a block-
ing force of50kN and can reach a maximum free elon-
gation of200µm. As flexible structure we used a steel
truss / console configuration, equipped with piezo force
and strain sensors (Kistler SlimLine ForceLink 9173B,
Smart Materials MFC M 2814 P2). The experiment
setup can be seen in Fig.4, steel extensions of1m

length each were welded to the console’s ends later to
reduce the natural frequencies. In this setup, the actu-
ator can generate a force of around4kN, and the first
structure vibration mode lies at around20Hz.
In order to design a vibration control system using con-
trol forces that are generated by the actuators, the trans-
fer behaviour from actuator voltage to generated force
is of special interest. The experimental results thus con-
centrate on this output quantity.

4.1 Linear System Identification
Figure 5 shows a magnitude transfer function estimate

for the entire flexible system, from the driving volt-
ageU to the forceF . Also, a 12th-order ARMAX
model has been fitted to the data, showing good agree-
ment. The first natural frequency lies low at around
20Hz. For the identification process, the system was
excited by a white noise input voltage signal of high
variance; the measurements were taken at a sampling
rate of1000Hz.
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Figure 5. Identified (linear) system response and 12th-order AR-

MAX model: Voltage - Force



4.2 Non-linear system response to harmonic input
Figures 6, 7, and 8 show the actuator gains from volt-

age to force / elongation for various frequencies and
amplitudes of harmonic input signals. One can observe
that the measured frequency range is uncritical (only
little change across frequencies). However, the input
amplitude does have a strong influence on the system
gain - large signals are amplified more than small ones.
This, together with inherent flexible structure vibration
feedback make a closed-loop actuator force control so-
lution necessary for active vibration control. Accurate
modeling, identification and inversion-based lineariza-
tion of the actuator’s nonlinearity can therefore lead to
a more effective linear control design later on.
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plitudes and frequencies
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4.3 Preisach model parameter identification
Signals realizing the FOD curves for 50 values of

uα were generated, spanning across the entire work-
ing voltage range of the actuator (100 − 900V). Upon
driving the system with this input signal, the output at
the descending slope of each FOD curve yielded the
respectiveFαβ value, which was used to compute the
Everett surface of the Preisach model. The sensor sig-
nals were sufficiently noise-free, so no further output
signal post-processing was necessary.
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Figure 8. Actuator gain: voltage to force, varying input amplitudes

and frequencies

As discussed in section 3.2, the FOD curve shape was
tuned in order to avoid excessive excitation of structure
modes. Figure 9 shows the Everett surface retrieved
using a simple FOD shape (triangular wave). The non-
smooth reversal point atuα excites higher structure
modes, which deteriorate the measurement and lead to
the artifacts visible in Fig.9. This can be avoided by
using smooth FOD curve shapes (sine half waves).
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Figure 9. Measured Everett-surface forU − F relation, distorted

by a structure mode

Figure 10 shows the final Everett surface, using the
sine FOD curve form and averaging over several runs
with FOD peak time variation. The retrieved Everett
surface is strictly positive and strictly monotonous and
thus valid. Figure 11 is the computed inverse surface
which is used for the inversion feed-forward test mea-
surement below.

4.4 Preisach inversion performance
Using the inverse Everett surface (see Fig.11), the

hysteresis input for a demanded output can be com-
puted. The uncompensated system response is shown
in Fig.12, while the feed-forward performance is de-
picted in the diagram in Fig.13 for the same input sig-
nal. It can be seen that the hysteresis width is re-
duced, however deviations remain that can stem from
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Figure 11. Inverse Everett-surface for theU − F relation

system dynamics (spill-over of a higher-order struc-
tural mode), sensor dynamics, or deviating hysteresis
behaviour (congruency property not exactly fulfilled).
In these plots the phase lag due to the mechanical struc-
ture transfer function of−9.6 deg has been subtracted,
and the absolute gain has been corrected by fitting it
to the reference force amplitude. Preliminary stud-
ies show that the inversion lookup computation time
is small enough for real-time operation.
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Figure 12. Raw actuator
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phase corr.

−1000 −500 0 500 1000
−1000

−500

0

500

1000

Ref. Force (N)M
ea

su
re

d
F

o
rc

e
(N

)

Figure 13. Actuator re-

sponse to inverse signal (10
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5 Conclusion
This work showed possibilities to identify a piezo-

electric stack actuator’s non-linearities in a structure-
mounted configuration. The Preisach hysteresis model
was identified from measurement data of First-Order
Descent (FOD) curves, yielding Everett surfaces by in-
terpolation. By shaping the FOD sequence appropri-
ately and using frequency-averaged Everett surfaces,
the structure response is masked out. Measurement and
experimental results are reported to support and verify
the modeling and identification methodology.
For complex vibration control systems, an important
sub-system is an actuator force control loop in order to
track reference control force signals. This tracking per-
formance can be improved by the proposed approach
to eliminate actuator’s nonlinear hysteretic behaviour
using an appropriate inverse hysteresis model.
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