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Abstract
Classical evolutionary game theory focuses on infi-

nite well-mixed populations, where the dynamics is
ruled by averaging the payoffs of all possible inter-
actions between couples of players. Classical theory
has been recently extended to account for the pres-
ence of networks of connections among a finite num-
ber of agents. Anyway, in both the above theories,
agents are only allowed to interact with others play-
ers. In this paper, we introduce the concept of inter-
nal mechanisms, represented by games that agents play
against themselves (self games), and we study their im-
pact on the dynamics at the level of single agents and
of the whole population. The main findings concern
with the onset of mixed Nash equilibria, which can be
stable and, in some cases, represent consensus solu-
tions. Surprisingly, the internal mechanisms can drive
games with only dominant strategies, such as the pris-
oner’s dilemma game, towards globally stable mixed
Nash equilibria. The results have been obtained on the
basis of theoretical reasonings as well as extensive nu-
merical experiments.
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1 Evolutionary game theory on networks
Evolutionary game theory has been developed to

model the mechanisms ruling the time evolution of
strategies in a well-mixed population of agents (here-
after also called individuals or players). Basically, this
is achieved by dynamically comparing the strategy
fitness of each player involved in games; individuals
which use the fittest strategy are favored with respect to
others, thus changing in time the strategy distribution
within the population.

Evolutionary game theory is grounded on the well
known replicator equation [13; 4; 9], here reported in
the simplest version in which only two strategies are
allowed: {

ẋ1 = x1(p1 − φ)

ẋ2 = x2(p2 − φ).
(1)

In equation (1), x1 and x2 represent the distributions of
strategies 1 and 2 in the population (x1 ≥ 0, x2 ≥ 0
and x1 + x2 = 1), while p1 and p2 are the fitnesses of
the two strategies, respectively. φ = x1p1 +x2p2 is the
average fitness of the whole population. Since the pop-
ulation is well-mixed, p1 and p2 depend on all the pos-
sible two-players games played by the infinitely many
individuals within the population. The game outcomes
are ruled by the so called payoff matrix B = {bs,r},
where bs,r is the payoff that a player which uses strat-
egy s earns against another player which uses strategy
r. Then the fitnesses are defined as:{

p1 = b1,1x1 + b1,2x2

p2 = b2,1x1 + b2,2x2.
(2)

The terms (p1−φ) and (p2−φ) in equations (1) can be
seen as a sort of growth coefficients for x1 and x2; for
instance, if (p1−φ) is positive, then (p2−φ) < 0, and
consequently x1 will grow up, while x2 will decrease
(x1 is fitter than x2). Using the fact that x2 = 1 − x1,
and substituting x1 with x, equation (1) reduces to the
following ordinary differential equation:

ẋ = x(1− x)∆p =
= x(1− x)(p1 − p2) =
= x(1− x)[(σ1 + σ2)x− σ2],

(3)

where ∆p = p1 − p2 is the fitness difference, and the
parameters σ1 = b1,1 − b2,1 and σ2 = b2,2 − b1,2 fully



characterize the game type described by the payoff
matrix B. Indeed, in the context of evolutionary game
theory it has been proven that any payoff matrix B is
equivalent to a diagonal matrix diag(σ1, σ2) [13; 4;
12], then in the rest of this work, we will refer only to
diagonal payoff matrices B = diag(σ1, σ2).

Recent works [6; 11; 10; 7; 5] showed that the repli-
cator equation can be extended to finite populations of
individuals arranged over a network of connections. In
this case, the network is described by a graph with a
finite set of vertices V = {1, . . . , N}, and adjacency
matrix A = {av,w}. Games are played only between
neighboring players, i.e., player v plays with player w
only if there is an edge connecting them in the graph,
or equivalently, if av,w = 1. The graph is directed:
av,w = 1 encodes the influence of player w on player
v, and, at the same time, aw,v can be null, if v does not
influence w.

In this framework, each player has its own payoff ma-
trix Bv = diag(σv,1, σv,2). Moreover, the strategy fit-
nesses, evaluated for each player, are indicated by pv,1
and pv,2 and are defined as the sum of the strategy fit-
nesses of all the interactions with neighboring players
(accounted by the entries av,w of the adjacency matrix
A). Their difference ∆pv = pv,1 − pv,2 reads as

∆pv =
∑N
w=1 av,w [(σv,1 + σv,2)xw − σv,2] . (4)

For each player, the variable xw ∈ [0, 1] in equation
(4), denotes the propensity of player w to use strategy
1, and 1−xw is the propensity for strategy 2. Based on
the fitness definition reported in (4), we can write the
replicator equation on networked population, hereafter
called EGN [7]:

ẋv = xv(1− xv)∆pv. (5)

The state space of system (5) is the hypercube [0, 1]N .
Notice that equation (5) is significantly different
from the standard replicator equation: while the state
variable x in (1) denotes the distribution of strategy 1
over the whole population, in the networked context
xv specifies the state of the vth player. Moreover,
while in the standard context a player is allowed only
to choose pure strategies, here players can also use
mixed strategies, thus increasing the dimension of their
decision space.

Furthermore, equation (5) can be read as a model of
distributed agents in a social context, thus providing a
new approach to tackle consensus problems (see, for
example, [2; 14]).

In this paper, we investigate the presence of pure
and mixed Nash equilibria in the EGN depending, for
each player, on the entries of both the payoff matrices

of games played with neighbor players (external
mechanisms) and with himself (internal mechanisms).
Our findings show that there are transitions between
different pure and mixed Nash equilibria, reported
also in [3], and eventually allowing players to reach
consensus. These results are also promising to solve
distributed control problems [1].

2 External and internal dynamical mechanisms
Presently, in both standard replicator equation and

EGN, agents dynamically change their strategy in
agreement with the outcomes of their interactions with
other players. Self interaction are not studied yet.
The main contribution of this work is based on the in-

troduction of internal mechanisms that influence the
dynamics of each player. Basically, a generic internal
mechanism can be described as a game that any indi-
vidual plays against itself.
Notice that this is not possible in the standard theory

due to the assumption of well mixed population. On
the contrary, in the EGN one can distinguish between
different players, then the contributions to the payoff
coming from out (external mechanism) and self (inter-
nal mechanism) games can be calculated separately.

To this aim, we allow the presence of self loops within
the graph of connections. If player v plays a self game,
then av,v = 1. In order to distinguish between the two
kind of games, we indicate with Bv the payoff matrix
used by player v against other individuals, and with
BSv = diag(σSv,1, σ

S
v,2) the payoff matrix of his self

game.

The effect of this internal mechanism is embedded in
the replicator equation on network by adding the fol-
lowing term

∆pSv = av,v
[
(σSv,1 + σSv,2)xv − σSv,2

]
, (6)

to the quantity ∆p. This allows to obtain a modified
version of EGN:

ẋv = xv(1− xv)(∆pv + ∆pSv ). (7)

3 Consensus
It is straightforward to verify that all the 2N points
x∗, such that x∗v ∈ {0, 1} ∀v ∈ V , are steady states
of equation (7). These points are called pure steady
states and they represent the vertices of the hypercube
[0, 1]N . Recalling that x∗ is a consensus steady state
if x∗v = c ∀v ∈ V , the pure steady states such that all
individuals eventually converge to the same strategy
are particularly interesting because they represent a
consensus. In the following, we will refer to the steady
state ALL1 when all individuals converge to the pure
strategy 1, i.e. x∗v = 1 ∀v ∈ V , and to ALL2 in



the opposite situation, where x∗v = 0 ∀v ∈ V . The
consensus steady states that are eventually reached by
the population, are also Nash equilibria.

Figure 1. Value of mixed equilibrium components for N = 100
individuals playing a prisoner’s dilemma game (σv,1 = −1 and
σv,2 = 2 ∀v ∈ V ), arranged on a random network with a
scale free degree distribution. All individuals play a self game, with
σSv,1 = 50 ∀v ∈ V . The value of mixed equilibrium com-
ponent of a given player with degree kv (kv ∈ [5, 50]) and
σSv,2 ∈ [−20, 50] is represented by a color ranging from red
(x∗v = 0) to blue (x∗v = 1). Level curves of the mixed equi-
librium components are depicted with thin black lines. The degree
kv of each player is reported with a thick black line.

Furthermore, system (7) presents at most one isolated
mixed steady state x∗, hereafter called ALLM, char-
acterized by x∗v ∈ (0, 1) ∀v ∈ V . According to [13;
7], ALLM steady state [x∗1, x

∗
2, . . . , x

∗
N ] is obtained by

solving the following system of equations:

∆pv + ∆pSv = 0 ∀v ∈ V. (8)

Unlike pure steady states, ALLM is not feasible when
∃v ∈ V : x∗v 6∈ (0, 1). Moreover, since its components
are in general different, ALLM is not guaranteed to
be a consensus steady state. Notice that the ALLM
steady state is always a Nash equilibria, whenever it is
feasible.

This fact is highlighted in Figures 1, 2 and 3, where
the population is arranged on a random network with
a scale free degree distribution. Here, σv,1 and σv,2
are fixed for all players according to 3 different proto-
typical games: Prisoner’s Dilemma (PD) in Figure 1,
Stag Hunt (SH) in Figure 2 and Chicken game (CH) in
Figure 3. σSv,1 has been also set to 50 for all games and
all players. We report the value of ALLM components
of any player characterized by a given degree kv and

Figure 2. Value of mixed equilibrium components for N = 100
individuals playing a Stag Hunt game (σv,1 = 1 and σv,2 =
1 ∀v ∈ V ), arranged on a random network with a scale free de-
gree distribution. All individuals play a self game, with σSv,1 =
50 ∀v ∈ V . The value of mixed equilibrium component of a given
player with degree kv (kv ∈ [5, 50]) and σSv,2 ∈ [−20, 50]
is represented by a color ranging from red (x∗v = 0) to blue
(x∗v = 1). Level curves of the mixed equilibrium components are
depicted with thin black lines. The degree kv of each player is re-
ported with a thick black line.

for a given σSv,2 by using colors ranging from red
(xv = 0) to blue (xv = 1). Moreover, we report with
a thick black line the degree of each player and with
thin black lines the level curves of mixed equilibrium,
along which all players components are the same, thus
ALLM is a consensus. We notice a strong similarity
between the curve of the degree of each player and the
level curves of the mixed equilibrium; in particular,
σSv,2 is proportional to −kv in Figures 1 and 2 while
it is proportional to kv in Figure 3. The same results
hold for variable σSv,1 when σSv,2 is fixed. This fact
suggests that linear relationships between σSv,1, σSv,2
and kv ensure ALLM to have all equal components.

In order to prove the validity of these findings, let
suppose that all players use the same payoff matrix
Bv = B = diag(σ1, σ2) and that each player is in-
fluenced by an internal mechanism (av,v = 1 ∀v ∈ V)
represented by a self game. Assuming that ALLM is a
consensus equilibrium, we substitute x∗v with xM and
we obtain:

∆pv =
∑N
w=1 av,w

[
(σv,1 + σv,2)xM − σv,2

]
=

= kv
[
(σ1 + σ2)xM − σ2

]
,

(9)
and

∆pSv = (σSv,1 + σSv,2)xM − σSv,2. (10)

Plugging the results (9) and (10) into equation (8), we



get that:

xM =
kvσ2 + σSv,2

kv(σ1 + σ2) + σSv,1 + σSv,2
∀v ∈ V. (11)

Figure 3. Value of mixed equilibrium components for N = 100
individuals playing a Chicken game (σv,1 = −1 and σv,2 =
−1 ∀v ∈ V ), arranged on a random network with a scale free
degree distribution. All individuals play a self game, with σSv,1 =
50∀v ∈ V . The value of mixed equilibrium components of a given
player with degree kv (kv ∈ [5, 50]) and σSv,2 ∈ [−20, 50] is
represented by a color ranging from red (x∗v = 0) to blue (x∗v =
1). Level curves of the mixed equilibrium components are depicted
with thin black lines. The degree kv of each player is reported with
a thick black line.

If we assume that the internal mechanisms are char-
acterized by the parameters σSv,1 = µ1kv and σSv,2 =
µ2kv , with µ1 and µ2 constant parameters, then ALLM
really is a consensus steady state. Indeed, solution

x∗v = xM =
σ2 + µ2

σ1 + σ2 + µ1 + µ2
(12)

satisfies equation (11) ∀v ∈ V since its components do
not depend on σSv,1, σSv,2 and kv anymore, thus con-
firming the findings obtained from Figures 1, 2 and 3.
Of course, this equilibrium is feasible if xM ∈ (0, 1).
Notice that for µ1 = µ2 = 0, xM reduces to σ2

σ1+σ2
,

which corresponds to the mixed equilibrium of the
standard replicator equation (1), where self games are
not present.

The formulas σSv,1 = µ1kv and σSv,2 = µ2kv are not
the unique way to ensure the existence of a consensus
equilibrium, although they provide a sufficient con-
dition. Anyway, they are appealing for a particular
reason: the payoff ∆pv is the results of all the kv

Figure 4. Average value of N = 100 agents asymptotic strat-
egy playing a prisoner’s dilemma game (σv,1 = −1 and σv,2 =
2 ∀v ∈ V ) on a generic network. All players are subject to in-
ternal mechanisms (self games) with σSv,1 = µ1kv and σv,2 =
µ2kv ∀v ∈ V . For each value of µ1 and µ2, the value of aver-
age asymptotic strategy is represented with a color ranging from red
(x∗v = 0) to blue (x∗v = 1). Black lines delimit the regions where
the system reaches a consensus equilibrium; ALL2 in the upper left
corner, ALL1 in the lower right corner and ALLM in the lower
left corner. In the remaining region, the system does not reach a con-
sensus steady state. The white star indicates the simulation result
when self games are not used (i.e. µ1 = µ2 = 0).

interactions of individual v with its neighbors. Hence,
∆pSv must be strong enough compared to ∆pv in order
to have a balance between the internal and the external
mechanisms, mathematically nor ∆pv neither ∆pSv
must be neglectable in equation 8. This fact has very
significant implications for the applications to social
context; in fact, the self confidence of players’ on his
internal decision must be as strong as the connectivity
level (social role) of the player himself in the society.

3.1 Stability of consensus steady states
The results of the previous section clearly state

that the presence of the equilibrium ALLM strongly
depends on the internal mechanisms, described by
parameters σSv,1 and σSv,2. Furthermore, our findings
show that the internal mechanisms can change the
stability properties of the steady states, driving the
dynamics of the whole population towards unexpected
situations. For example, consider a population where
all individuals play a Prisoner’s Dilemma game (PD).
More formally, suppose that Bv = B = diag(σ1, σ2),
with σ1 < 0 and σ2 > 0. In this case, it is well
known that the whole population will prefer strategy
2 (defection) instead of strategy 1 (cooperation) [8];
in detail, ALL2 is asymptotically stable, ALL1 is
unstable and ALLM is not feasible.



Figure 4 shows the results of simulation experiments
of a population of N = 100 individuals all playing the
same PD game on a arbitrary graph. Each individual
plays an internal game described by different values
of σSv,1 and σSv,2 for each player. In particular, we set

µ1 =
σS
1

k and µ2 =
σS
2

k . This guarantees that ALLM is
a consensus steady state as described by equation (12).
For each value of µ1 and µ2, we have performed
several simulations of system (7) starting from random
initial conditions (xv(0) ∈ (0, 1) ∀v ∈ V). Then, we
have reported the average of the components of the
stable steady stated to which the agents have converged
asymptotically.

Figure 5. Dynamical behavior of a population ofN = 100 indi-
viduals playing a PD game (σv,1 = −1 and σv,2 = 2 ∀v ∈ V ),
arranged on arbitrary network in four different regimes: the consen-
sus ALL2 is reached with µ1 = 0 and µ2 = 0 (upper left
panel); no consensus is reached for µ1 = 3 and µ2 = −1 (up-
per right panel); the consensus ALL1 is reached for µ1 = 2 and
µ2 = −4 (lower right panel); the consensus ALLM is reached
for µ1 = −1 and µ2 = −3 (lower left panel).

In particular, in Figure 4 we can identify four regions:

1. the upper left corner is the region where the con-
sensus is reached and corresponds to the globally
attracting steady state ALL2;

2. the lower right corner is the region where the con-
sensus is reached and corresponds to the globally
attracting steady state ALL1;

3. the lower left corner is the region where the con-
sensus is reached and corresponds to the globally
attracting steady state ALLM;

4. the upper right corner is the region where ALL1,
ALL2 and ALLM (when feasible) are not globally
stable, thus the consensus is never reached.

Details of the dynamics are depicted in Figure 5;
here, we run the systemfor different values of µ1 and

Figure 6. Average value of N = 100 agents asymptotic strategy
playing a Stag Hunt game (σv,1 = 1 and σv,2 = 1 ∀v ∈ V )
on a generic network. All players are subject to internal mechanisms
(self games) with σSv,1 = µ1kv and σv,2 = µ2kv ∀v ∈ V .
For each value of µ1 and µ2, the value of average asymptotic strat-
egy is represented with a color ranging from red (x∗v = 0) to blue
(x∗v = 1). Black lines delimit the regions where the system reaches
a consensus equilibrium; ALL2 in the upper left corner, ALL1
in the lower right corner and ALLM in the lower left corner. In
the remaining region, the system does not reach a consensus steady
state. The white star indicates the simulation result when self games
are not used (i.e. µ1 = µ2 = 0).

µ2, chosen on the basis of Figure 4. In particular, the
left upper panel shows the ALL2 consensus, the lower
left panel shows the ALLM consensus, the upper right
panel shows the situation with no consensus and finally
the lower right panel shows the ALL1 consensus.
Notice that, except for consensus on the state ALL2,
all the other cases are unexpected when compared to
the well known asymptotic behavior in the PD game,
where strategy 2 (defection) always dominate all the
others. Indeed, when self loops are not present (i.e.
µ1 = µ2 = 0), the system converges to ALL2 as
indicated by the white star in Figure 4.

Figures 6 and 7 show the same simulation experiment
for Stag Hunt and Chicken Games. Similar results
hold, altough the geometry of the consensus regions
are different. Notably, also in this case the consensus
is reachable, including the case ALLM. This is partic-
ularly important because the self games has the role of
stabilizing a steady state, e.g. the mixed steady state
of the Stag Hunt game, that is unstable in the standard
replicator and in the EGN equations [7]. When self
loops are not present (i.e. µ1 = µ2 = 0), the system
converges to a non-consensus steady state as indicated
by the white stars in Figures 6 and 7.



Figure 7. Average value of N = 100 agents asymptotic strategy
playing a Chicken game (σv,1 = −1 and σv,2 = −1 ∀v ∈ V )
on a generic network. All players are subject to internal mechanisms
(self games) with σSv,1 = µ1kv and σv,2 = µ2kv ∀v ∈ V .
For each value of µ1 and µ2, the value of average asymptotic strat-
egy is represented with a color ranging from red (x∗v = 0) to blue
(x∗v = 1). Black lines delimit the regions where the system reaches
a consensus equilibrium; ALL2 in the upper left corner, ALL1
in the lower right corner and ALLM in the lower left corner. In
the remaining region, the system does not reach a consensus steady
state. The white star indicates the simulation result when self games
are not used (i.e. µ1 = µ2 = 0).

4 Conclusion
In this paper, the concept of internal mechanisms of

players in evolutionary game on networks has been in-
troduced. These are described as self games played by
individuals alongside with the games played with their
neighbors (external mechanisms). Simulation results
showed that the presence of internal mechanisms may
strongly influence the whole system dynamics by intro-
ducing steady states that are not feasible in the standard
evolutionary game theory. In particular, our findings
show that the parameters characterizing the internal
mechanisms can be chosen in order to obtain a mixed
Nash equilibrium, which is also a consensus steady
state. This fact is very significant in the prisoner’s
dilemma game, where only dominant pure strategies
are allowed in the standard theory. Finally, the results
of our study can be used to control networked systems
to drive their dynamics towards a desired consensus
steady state by choosing suitable parameters that char-
acterize the self games of each player.
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