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Abstract— Considering a two-dimensional system of nonau-
tonomous differential equations with discontinuous right-hand
sides describing the behavior of a DC/DC converter with pulse-
width modulated control, the paper demonstrates how a two-
dimensional invariant torus can arise from a stable equilibrium
point. We determine the chart of dynamical modes and show
that there is a region of parameter space in which the system has
a single stable node equilibrium point. Under variation of the
parameters, this equilibrium may collide with a discontinuity
boundary between two smooth regions in the phase space. When
this happens, one can observe a variety of different bifurcation
scenarios. One scenario is the continuous transformation of
the stable equilibrium into a stable period-1 focus. A second
is the transformation of the stable node equilibrium into an
unstable period-1 focus, and the associated formation of a two-
dimensional (ergodic or resonant) torus.

I. INTRODUCTION

Many practical problems lead us to consider dynamical
systems that are piecewise-smooth. Examples of such sys-
tems include switching circuits, mechanical systems with
friction or impacts, and models of certain managerial and
economic systems.

The phase trajectories of these systems are “sewed” to-
gether from separate smooth parts. As a parameter is varied,
one of the arcs of a periodic trajectory may become tangent
to a sewing surface, i.e., to a surface that divides the phase
space into domains of different dynamics or crosses through
the border of this surface. When this happens, the Floquet
multipliers of the orbit can change abruptly, leading to a
special class of nonlinear dynamic phenomena known as
border-collision bifurcations [1], [2], [3], [4], [5].

A simple type of border-collision bifurcation is repre-
sented by the continuous transformation of a solution from
one type into another with preservation of the cycle period.
Here, the solution type is determined by the number of
sections from which the cycle is sewed up [5]. However,
more complicated phenomena are also possible, including
new types of direct transitions to chaos, and the merging
or disappearance of solutions of different types [6], [7], [8].
Border-collision related bifurcations also include sliding and
grazing bifurcations [8], [9]
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Continuous-time piecewise-smooth systems also display
bifurcations similar to the bifurcations of the equilibrium
that one observes in smooth systems. Examples of such
bifurcations include saddle-node, transcritical, pitchfork and
Hopf-like bifurcations. In a recent paper [10], a detailed
mathematical study of different types of non-smooth bifur-
cations scenarios for equilibrium points was performed. For
each of the classical smooth bifurcations, a discontinuous
bifurcation transition was found to exist, and this results was
illustrated with appropriate low-dimensional examples.

The main feature of discontinuous bifurcations of equilib-
ria is a jump of one eigenvalue (or a pair of eigenvalues) over
the imaginary axis when the parameter passes through the
bifurcation point. For nonsmooth continuous-time systems,
Leine et al. [10] presented interesting examples of Hopf-like
and Hopf-pitchfork bifurcation transitions. In both cases, a
stable periodic orbit arises from the stable equilibrium point
similarly to what one observes in smooth systems. However,
for the discontinuous Hopf bifurcation, a pair of eigenvalues
jumps over the imaginary axis.

Piecewise-smooth systems such as switching circuits [6],
[11] and impact oscillators [12] can also display quasiperi-
odic behavior. In a couple of recent papers [13], [14]
we have shown that border-collision bifurcations can lead
to the birth of a stable closed invariant curve associated
with quasiperiodic or phase-locked periodic dynamics. This
transition resembles the well-known Neimark-Sacker bifur-
cation. However, rather than through a continuous crossing
of a pair of complex-conjugate multipliers of the periodic
orbit through the unit circle, the border-collision bifurcation
involves a jump of the multipliers from the inside to the
outside of the this circle.

Together with the results obtained by Leine et al. [10],
this leads to the question if non-smooth systems can exhibit
a combined bifurcation in which an invariant torus arises
directly from the stable equilibrium point. The purpose of
the present paper is to examine the mechanism of invariant
torus birth under such conditions.

II. DESCRIPTION OF THE SYSTEM

Let us consider the two-dimensional continuous-time
piecewise-smooth nonautonomous system:

ẋ = λ1 (x − KF) ; ẏ = λ2 (y − KF) , (1)

KF =
1
2

(1 + sign(ξ)) ,

ξ = x(τ) − ϑy(τ) +
q

2Ω
− η(t), η(t) =

q

αΩ
(t − τ) ,

ϑ = λ1/λ2.



These equations constitute the model of a DC/DC con-
verter with pulse-width modulated control. A detailed de-
scription of the converter circuit, the functioning of the
converter, and its areas of application can be found in
our previous publications [6]. Here, one can also find an
explanation of the model equations.

The (dimensionless) dynamic variables x and y are linear
combinations of the currents and voltages in the converter
filter, and ξ is a linear combination of the variables x and y.
The function ξ represents the error signal, i. e., the deviation
of the converter output voltage from its desired value at the
beginning of each ramp cycle. λ1,2, are the eigenvalues of
the matrix for system (1). Based on the electronic parameters
of a typical converter, we have chosen λ1 ≈ −0.977; λ2 ≈
−0.232; q ≈ 35.606.

Operation of the converter is characterized by a cyclic
switching of the circuit topology. The nonlinearity of the
system is directly related to the switching processes as
controlled by the applied pulse-width modulation.

The switching function KF reacts to changes in the sign of
the differences between the error signal ξ and the ramp func-
tion η(t). The sawtooth function η is periodically repeated
ramp function with the ramp period 1 , i. e., η(t+1) = η(t).

The parameter q controls the amplitude of the sawtooth
function and the value of the reference signal. τ = [t] = k−
1, k = 1, 2, . . . is the discrete time variable, [t] being defined
as a function that is equal to the integer value of its argument.
α is an amplification constant and Ω is the normalized input
voltage to the converter. In the following bifurcation analysis
we shall use α and Ω as control parameters.

III. BIFURCATION ANALYSIS

By integrating the equations of motion for the continuous-
time system (1) ramp period by ramp period, investigation
of this system can be reduced to the analysis of the two-
dimensional piecewise-smooth stroboscopic map [6], [13].

xk = eλ1 xk−1 + eλ1(1−zk) − eλ1 ; (2)

yk = eλ2 yk−1 + eλ2(1−zk) − eλ2 ,

k = 1, 2, . . .

Here the variable zk can be determined according to the
expressions:

zk =




0, ϕk−1 ≤ 0;
αΩ
q

ϕk−1, 0 < ϕk−1 <
q

αΩ
;

1, ϕk−1 ≥ q

αΩ
,

ϕk−1 = xk−1 − ϑyk−1 +
q

2Ω
, 0 ≤ zk ≤ 1.

In the following investigations the parameters α and Ω are
varied within the limits: 12.0 ≤ α ≤ 40.0 and 4.6 ≤ Ω ≤
7.6.

When 0 < Ω < q
2(ϑ−1) (1 − 2/α), oscillations that may

arise at the beginning of a transient are damped. The value
of KF is constant and equal to unity, and the system behavior

Fig. 1. Chart of dynamical modes in the parameter plane (α,Ω) for a
DC/DC converter. Π0 is the domain where only the stable equilibrium
(x+, y+) = (1, 1) exists. Nϕ is line of Neimark–Sacker bifurcation.NC

ϕ
is the curve for the birth of oscillations from an equilibrium point. Π1

is the domains of stability for period-1 orbit. White domains represent
quasiperiodic or high-periodic cyclic solutions.

is described by the set of linear autonomous differential
equations

ẋ = λ1(x − 1); ẏ = λ2(y − 1);

x(τ) − ϑy(τ) +
q

2Ω
− η(t) > 0

with a single equilibrium point (x−, y−) = (1, 1). The
eigenvalues λ1,2 of the Jacobian matrix for this system are
real and negative. Hence, the equilibrium is a stable node.
Note that this equilibrium point for the original system (1)
will be represented as a fixed point in the map (2). Other
fixed points in the map represent periodic cycles in the
original system.

Oscillations arise when 1−ϑ+ q
2αΩ (α−2) > 0. Depending

on the parameters α and Ω these oscillations can be periodic
with a period multiple to the period of the external action,
or they can be quasiperiodic or chaotic. The curve in the
parameter plane (α,Ω) where oscillations arise from the
equilibrium point is determined by the equation

1 − ϑ +
q

2αΩ
(α − 2) = 0. (3)

We will denote this curve as NC
ϕ . For parameter values

immediately above the bifurcation point, the oscillation am-
plitude is small, and the amplitude grows linearly as the
system moves away from the bifurcation curve NC

ϕ .
Figure 1 represents the chart of the dynamical modes

within the plane of control parameters (α,Ω) where the
bifurcation boundary (3) is marked as NC

ϕ and Nϕ is a
line of Neimark–Sacker bifurcation. Below the curve NC

ϕ

(within domain Π0) the system (1) has the single stable
equilibrium (x−, y−) = (1, 1).

The Neimark–Sacker bifurcation curve Nϕ is supported
by the curve NC

ϕ in the point Pϕ of codimension two. The



(a)

(b)
Fig. 2. Birth of quasiperiodic orbit from a stable equilibrium through a
border-collision bifurcation on the curve NC

ϕ .The section {(α, Ω) : α =
14; 4.6 < Ω < 6.0}. (a) Bifurcation diagram.(b) Multiplier diagram for
the fixed point. ΩC

ϕ ≈ 4.746 is the bifurcation value of the parameter Ω
calculated according to expression (3).Ωϕ is the bifurcation point for the
Neimark–Sacker bifurcation. Ωϕ ≈ 5.801.

coordinates of this point in the parameter plane (α,Ω) are
determined by:

α∗ =
(λ1 − λ2)(1 − eλ1+λ2)

λ1λ2(eλ1 − eλ2)
+ 2; (4)

Ω∗ =
qλ2(1 − eλ1+λ2)

2(λ1 − λ2)(1 − eλ1+λ2) + 2λ1λ2(eλ1 − eλ2)
.

Between the curves NC
ϕ and Nϕ one can see a large number

of periodic windows that correspond to resonance tongues.
On the chart of dynamical modes, only the largest resonance
tongues are visible. Some of these tongues are supported by
the bifurcation curve NC

ϕ .
Above the bifurcation curve (3), the map (2) has a fixed

point corresponding to a period-1 switching cycle of the
continuous-time system (1).

This fixed point can be found from the equation for one
time iterated map (2). The stability of the fixed point is
determined by the conditions:



eλ1+λ2

(
1 +

λ1αΩ(eλ1z − eλ2z)
qe(λ1+λ2)z

)
< 1;

eλ1(1−z) − eλ1

1 − eλ1
− ϑ

eλ2(1−z) − eλ2

1 − eλ2

+
q

2Ωα
(α − 2z) = 0.

(5)

When passing through the boundary (3) into the domain
Π0, the fixed point is replaced by the equilibrium point
(x−, y−) = (1, 1), and along the curve (3), the equation
for the fixed point has the unique solution x∗ = 1, y∗ = 1.
The eigenvalues ρ1,2 of the Jacobian matrix for this solution
(multipliers of the period-1 cycle) are complex-conjugate:

ρ1,2 = ρr ± jρj ,

ρr =
eλ1 + eλ2

2
; ρj =

√
γ(α − 2) + µ,

µ = eλ1+λ2 − 1
4
(eλ1 + eλ2)

2
;

γ =
λ1λ2(eλ1 − eλ2)

2(λ1 − λ2)
, α � 2.7.

Along the bifurcation curve (3), the map (2) thus has a fixed
point (x∗, y∗) = (1, 1) with complex-conjugate multipliers.

As one can see, the real part of the multipliers ρ1,2

does not depend on the parameters α, Ω but is constant
ρr ≈ 0.5847. Therefore, the stability of the fixed point
(x∗, y∗) = (1, 1) is determined only by the imaginary part
of the multipliers. The condition for stability is determined
from (5) as:

eλ1+λ2 + λ1
eλ1 − eλ2

1 − ϑ + 0.5q/Ω
< 1 (6)

or

eλ1+λ2 + λ1
eλ1 − eλ2

2ϑ − 2
(α − 2) < 1.

From the condition (6) and the equation (3) one can
see, that while changing the parameters α and Ω along
the curve (3), the fixed point loses stability as we pass
the point Pϕ (see (4)), when a complex conjugated pair of
multipliers crosses the unit circle.

Depending on the parameter values we may therefore ob-
serve two different bifurcation scenarios. The first option is
the smooth transformation of the stable equilibrium (x−, y−)
into a stable period-1 focus. This type of bifurcation takes
place on that part of the curve NC

ϕ that falls to the left of
the point Pϕ.

The second option is that the stable node equilibrium
is transformed smoothly into an unstable focus. This bi-
furcation, which occurs along that part of the bifurcation
curve NC

ϕ that falls to the right of the point Pϕ, results in the
birth of a closed invariant curve for the discrete map (2). In
the time-continuous system (1), the stable equilibrium ceases
to exist and is replaced by an unstable period-1 focus cycle
with Floquet multipliers that fall outside of the unit circle.

If the rotation number is irrational, the invariant curve
is densely filled with points of the trajectory (the Poincaré
section is a closed smooth curve), and the dynamics is
quasiperiodic. Figure 2 shows the bifurcation and multiplier
diagrams to illustrate the birth of a quasiperiodic orbit from
the stable equilibrium.

When the rotation number is rational, the closed invariant
curve contains a pair of cycles, one of which is stable, while
the other is a saddle. The invariant curve itself is the union



Fig. 3. Part of the chart of the dynamical modes near the 3 : 20. NC
+

are the border-collision fold bifurcation curves. A and B are codimension
two points in which the curves NC

+ are supported by the line NC
ϕ . At the

transition across the segment AB saddle and stable cycles situated on the
closed invariant curve are born from an equilibrium point.

of the unstable manifolds of the saddle orbit with the stable
periodic orbit. Let us finally consider a few additional
aspects of the transition from the equilibrium to a phase-
locked invariant curve. Figure 3 shows part of the chart of
dynamical modes containing the 3 : 20 resonance tongue. It is
well-known that the resonance tongues in piecewise-smooth
systems are bounded by border-collision fold bifurcation
curves. In Fig. 3 such curves are denoted as NC

+ . As one
can see from from the figure, the bifurcation boundaries NC

+

are supported by the curve NC
ϕ in the codimension two

points A and B. In the points of the segment AB a pair of
cycles (stable and saddle) softly arise from the equilibrium
point. These cycles are situated on the closed invariant curve.
The diagrams in the Fig. 2 show that the typical size of the
invariant curve (its ”diameter”) grows linearly from zero as
the system moves away from the bifurcation point.

Figure 4 illustrates the birth of the invariant curve in
the transition across the segment AB of the bifurcation
curve NC

ϕ . Here solid lines correspond to the stable cycle and
dashed lines to the saddle. Figure 5 shows the phase portrait
of the dynamical system (2) within the 3 : 20 resonance
tongue for the parameter values α = 14.5 and Ω = 4.78.
Black circles in this figure mark the points of the stable
cycle and the white circles show the points of the saddle
cycle. Here WU

± and WS
± are unstable and stable manifolds

of the saddle periodic orbit, respectively.

IV. CONCLUSION

We considered the model of a DC/DC converter with
pulse-width modulated control. The behavior of such a
converter is described by a two-dimensional set of piecewise-
linear nonautonomous differential equations. The chart of dy-
namical modes in the parameter plane (α,Ω) for this system
was obtained through a detailed numerical and analytical
study. When the value of parameter Ω is small enough,

(a)

(b)
Fig. 4. Birth of stable and saddle period-20 cycles situated on the
closed invariant curve from a stable equilibrium through a border-collision
bifurcation on the curve NC

ϕ . (a) Bifurcation diagram. Here solid lines
correspond to the stable cycle and dashed lines to the saddle. (b) Multiplier
diagram for 20-cycle. Solid lines mark the multipliers of the stable cycle
and dashed lines 1 and 2 show the multipliers of the saddle cycle.

Fig. 5. Phase portrait of the map (2) within the 3 : 20 resonance tongue for
the parameter values α = 14.5 and Ω = 4.78. Here, the black circles mark
the stable cycle and the white circles mark the saddle ones. W U

± and W S
±

are unstable and stable manifolds, respectively.



the continuous-time representation has a single stable node
equilibrium. We showed that, under parameter variation, this
equilibrium can undergo a novel type of border-collision
bifurcation, in which a quasiperiodic or a phase-locked
invariant torus softly arises from the stable equilibrium state.

It is important to note that the phenomena observed for the
system (1) are not restricted to a single point in parameter
space, but occur along that part of the bifurcation curve NC

ϕ

that falls to the right of the point Pϕ (see Fig. 1). To the left
of Pϕ we observe a direct transition from the stable node
equilibrium point to a stable period-1 focus. We also note that
the above bifurcation scenarios do not exhaust the spectrum
of strange bifurcation phenomena that our converter system
can display.

The bifurcation phenomena observed for the system (1)
are distinguished from a classic Hopf bifurcation by the
following characteristics:

First, the transition is connected with the disappearance
of the stable equilibrium point, when it collides with a
discontinuity boundary between two smooth regions in the
phase space. It is not connected with the loss stability of
equilibrium point as it occurs in the classic Hopf bifurcation.

Second, the disappearance of the equilibrium point gives
rise to two types of bifurcation behavior:

(i) the stable equilibrium disappears and is replaced by
a stable period-1 orbit, the amplitude of which is growing
linearly from zero as the system moves away from the bifur-
cation point. Similar to the discontinuous Hopf-like bifurca-
tions, studied by Leine et al. [10], the stable equilibrium turns
into an unstable focus, and this equilibrium is surrounded
by the stable periodic orbit. In the considered case, a unique
stable periodic-1 orbit exists after the bifurcation;

(ii) rather than as a stable node, the periodic cycle arising
in the bifurcation is born as an unstable focus surrounded by
a resonant or ergodic torus.

However, more complicated bifurcation phenomena are
also possible, including multiple choice bifurcations [15],
[16] in which several attractors “surrounding an unstable
focus period-1 cycle” are created simultaneously as the stable
equilibrium point disappears, direct transition from a stable
node equilibrium to chaotic attractor.
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