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Abstract: The paper is devoted to the thermal explosion problem in the case of autocatalytic
reaction given both heat transfer and diffusion. The problem is actual in working out the new
sources of power for space technologies. By means of the method of integral manifolds there are
investigated critical regimes and are found critical values of parameter for plane-parallel and for
cylindrical reactors.
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1. INTRODUCTION

The problem of evaluation of critical regimes as the
regimes separating the regions of explosive and nonexplo-
sive ways of chemical reactions is the main mathematical
problem of the thermal explosion theory.

Investigation of critical phenomena of the thermal explo-
sion theory was hold by Semenov (1959), Zeldovich et.
al. (1980), Frank-Kamenetsky (1967), Todes, Melent’ev
(1939), Merzhanov, Dubovitsky (1966), Gray (1973) et
al. Because of considerable difference between velocities of
thermal and concentrational changes, singularly perturbed
systems of differential equations serve as mathematical
models of such problems. But in the above works the
authors restrict their consideration to the study of zero
order approximation. It does not let them explain the
strong parametric sensitivity of this problem as well as
to examine the transformation of solutions in the vicinity
of the limit of self-ignition.

In the works Gorelov, Sobolev (1992, 1991); Gorelov,
Sobolev, Shchepakina (1999, 2006) it was proposed to use
the stable-unstable integral manifold as a mathematical
model of the critical regime of the autocatalytic reaction
within investigation of the lumped model. This approach
permits to work out the algorithms of asymptotic repre-
sentations of the critical values of the parameter of initial
conditions and to describe the transfer regimes.

Such approach appeared to be fruitful in the case of
distributed model in the problem of thermal explosion.

2. PROBLEM SETTING

Consider nonlinear singularly perturbed parabolic system

ε
∂θ

∂τ
=

1
δ

(
∂2θ

∂ξ2
+
n

ξ

∂θ

∂ξ

)
+ ϕ(η)exp

(
θ

1 + βθ

)
, (1)

ε
∂η

∂τ
=

1
ρ

(
∂2η

∂ξ2
+
n

ξ

∂η

∂ξ

)
+ εϕ(η)exp

(
θ

1 + βθ

)
(2)

with boundary conditions

∂θ

∂ξ

∣∣∣∣∣
ξ=0

= 0, θ
∣∣∣
ξ=1

= 0,
∂η

∂ξ

∣∣∣∣∣
ξ=0

= 0,
∂η

∂ξ

∣∣∣∣∣
ξ=1

= 0 (3)

and initial conditions

θ
∣∣∣
τ=0

= 0, η
∣∣∣
τ=0

= 0. (4)

This is a mathematical model of the problem of thermal
explosion given heat transfer and diffusion in the case of
autocatalytic combustion process. Here θ is a dimension-
less temperature, η is a dimensionless rate of combustion,
τ is a dimensionless time, ε and β are small positive
parameters, δ is a Frank-Kamenetsky criterion, that is the
scalar parameter, characterizing initial state of the system.
Depending on its value, reaction either is explosive or
proceeds slowly. The value of parameter δ separating slow
and explosive regimes is called critical. Function ϕ(η) de-
termines the law according to which the reaction proceeds:
for ϕ(η) = η we have the first order reaction, for ϕ(η) = ηn

it is the n−th order reaction, and for ϕ(η) = η(1− η) it is
an autocatalytic one.

Using the method of integral manifolds, the critical value
of δ is calculated as an asymptotic series with respect to
degrees of the small parameter ε

δ = δ0(1 + δ1ε) +O(ε2), (5)

where critical regimes are modelled by the duck-trajectories.
For n = 0 (plane-parallel reactor) n = 1 (cylindrical
reactor) corresponding values of δ0 and δ1 are estimated.

3. CRITICAL CONDITIONS OF THE
PLANE-PARALLEL REACTOR

Setting n = 0 in (1)–(2), in the case of plane-parallel
reactor we obtain the system

ε
∂θ

∂τ
= η(1− η)eθ +

1
δ

∂2θ

∂ξ2
,

ε
∂η

∂τ
= εη(1− η)eθ +

1
%

∂2η

∂ξ2
,

(6)

with boundary conditions



∂θ

∂ξ

∣∣∣∣
ξ=0

= 0 , θ
∣∣∣
ξ=1

= 0 ;
∂η

∂ξ

∣∣∣∣
ξ=0

= 0 ,
∂η

∂ξ

∣∣∣∣
ξ=1

= 0 . (7)

One-dimensional slow integral manifold corresponds to the
critical regime. This manifold can be found in a parametric
form

θ= θ(v, ξ, ε) = θ0(v, ξ) + εθ1(v, ξ) +O(ε2) ,

η= η(v, ξ, ε) = η0(v, ξ) + εη1(v, ξ) +O(ε2) ,
dv

dτ
= V (v, ε) = V0(v) + εV1(v) +O(ε2) .

(8)

The coefficient δ will be found also as asymptotical expan-
sion

δ = δ0(1 + εδ1) +O(ε2) . (9)

Taking into account (8) we obtain for (6)

ε
∂θ

∂v
V = η(1− η)eθ +

1
δ

∂2θ

∂ξ2
,

ε
∂η

∂v
V = εη(1− η)eθ +

1
%

∂2η

∂ξ2
.

(10)

The problem for zero order approximation of the integral
manifold (8) is derived from (10) under ε = 0 :

∂2θ0

∂ξ2
+ δ0η0(1− η0) eθ0 = 0,

1
%

∂2η0

∂ξ2
= 0,

(11)

with boundary conditions

∂θ0
∂ξ

∣∣∣∣
ξ=0

= 0, θ0

∣∣∣
ξ=1

= 0, (12)

∂η0
∂ξ

∣∣∣∣
ξ=0

= 0,
∂η0
∂ξ

∣∣∣∣
ξ=1

= 0. (13)

The second equation in (11) with boundary conditions (13)
has the solution η0 = η0(v). It is convenient to choose
parameter v as η0(v, ξ) ≡ v.

Thus, the first equation in (11) takes the form

∂2θ0
∂ξ2

+ δ0v(1− v) eθ0 = 0 . (14)

Consider the auxiliary boundary value problem

y′′ + aey = 0 ,

y′(0) = y(1) = 0 .
(15)

The solution of (15) is

y = 2(ln chσ − ln chσξ) , (16)

where σ is the solution of transcendental equation

ch(σ) =
√

2
a σ . (17)

Under some a = a∗ the last equation possesses the unique
solution σ = σ∗, under a > a∗ there are no solutions, and

under a < a∗ there are two solutions of this equation. The
corresponding approximate values for a∗ and σ∗ are

a∗ = 0.878457, σ∗ = 1.19968. (18)

It is clear that the boundary value problems (16), (12)
and (14), (12) are coincident under a = δ0v(1 − v). The
maximal value of the right-hand side of last equality is
δ0/4 under v = 1/2. The zero approximation of the critical
value of the coefficient δ is thus seen to be 4a∗, and for δ0
we obtain the approximate value

δ0 = 4a∗ = 3.513828. (19)

By this means under the condition δ0 < δ∗0 the boundary
value problem (14), (12) possesses two solutions. Upper
solution corresponding to high temperatures is unstable,
and lower one is stable. The solutions coincide at the point
v = 1/2 under the condition δ0 = δ∗0 , and under the
condition δ0 > δ∗0 there exists such interval (v1, v2) that
there are no solutions on it. The following expressions as
a zero order approximation for the slow one-dimensional
integral manifold are obtained:

θ = θ0(v, ξ) , η = v ,

where θ0 is a chosen solution of the boundary value
problem (14), (12) under the condition δ0 = δ∗0 .

Substituting (8), (9) in (6), (7) and equating coefficients at
ε we obtain the problem for the first order approximation

∂2θ1

∂ξ2
+δ0v(1−v)eθ0θ1 = δ0

(
∂θ0
∂v

V0−(1−2v)eθ0η1−

δ1v(1−v)eθ0
)
,

∂2η1

∂ξ2
+ v(1−v)eθ0 = V0 ,

(20)

with the boundary conditions

∂θ1
∂ξ

∣∣∣∣
ξ=0

= 0, θ1

∣∣∣
ξ=1

= 0. (21)

∂η1
∂ξ

∣∣∣∣
ξ=0

= 0,
∂η1
∂ξ

∣∣∣∣
ξ=1

= 0. (22)

Integrating (20) over ξ from 0 to 1 and taking into account
(22) we obtain

V0 = v(1− v)

1∫
0

eθ0(ξ,v)dξ. (23)

To calculate the integral in (23) we use (16) and get

θ0(ξ, v) = 2 ln ch(σ(v))− 2 ln ch(σ(v)ξ) , (24)

where σ(v) is the solution of (17) under a = v(1 − v)δ0
and, therefore,

eθ0(ξ,v) =
ch2(σ(v))
ch2(σ(v)ξ)

. (25)

From the last formula we have



V0(v) = v(1−v)

1∫
0

ch2(σ(v))
ch2(σ(v)ξ)

dξ =

= v(1−v)
ch2(σ(v))
σ(v)

th(σ(v)) =

= v(1− v)
(

ch(σ(v))
σ(v)

)2

σ(v)th(σ(v)) .

(26)

It should be noted that under ν = 1/2 taking into account
the identity

1− σ∗th(σ∗) = 0 , (27)

from (17) we obtain

V0

(1
2

)
=

1
4

(
ch(σ∗)
σ∗

)2

σ∗th(σ∗) =
1
4

2
a∗

=
2
δ∗0

. (28)

To define the first order approximation of the critical value
of the parameter δ we consider the first equation (20)
under the condition v = 1/2 and obtain

∂2θ1

∂ξ2
+
δ0
4
eθ0θ1 = f(ξ) ,

f(ξ) = δ0

(
∂θ0(ξ, 1

2)

∂v
V0

(1
2

)
− δ1

4
eθ0(ξ,

1
2 )

)
.

(29)

The corresponding homogeneous boundary value problem
∂2θ1

∂ξ2
+
δ0
4
eθ0θ1 = 0 ,

∂θ1
∂ξ

∣∣∣∣
ξ=0

= θ1

∣∣∣
ξ=0

= 0 ,
(30)

has nontrivial solution ϕ0(ξ), which is an eigenfunction
corresponding to zero eigenvalue:

ϕ0(ξ) = 1− σ∗ξth(σ∗ξ) . (31)

Thus, the solvability condition for the boundary value
problem (29) is

1∫
0

f(ξ)ϕ0(ξ)dξ = 0 (32)

or

1∫
0

(
∂θ0(ξ, 1

2)

∂v
V0

(
1
2

)
− δ1

4
eθ0(ξ,

1
2 )

)
(1−

−σ∗ξth(σ∗ξ))dξ = 0 . (33)

Note that (33) exactly coincides with the condition of
continuity of integral manifold at the point v = 1/2.

Let us calculate now functions contained in (33). Formula
(24) implies

∂θ0
∂v

= 2(th(σ(v))− th(σ(v)ξ)
∂σ

∂v
. (34)

It is convenient to rewrite (17) in the form

ch(σ)
σ

=
√

2
δ0
, [v(1− v)]−

1
2 . (35)

Differentiating (34) with respect to v we obtain(
sh(σ)
σ
− ch(σ)

σ2

)
∂σ

∂v
= −1

2

√
2
δ0
, (36)

[v(1− v)]−
3
2 (1− 2v).

Taking into consideration that under ν = 1/2 the equali-
ties

sh(σ)
σ
− ch(σ)

σ2
= 0, 1− 2v = 0 , (37)

hold, and after iterated differentiation, we obtain under
v = 1/2

(
ch(σ∗)
σ∗

− sh(σ∗)
σ∗2

+2
ch(σ)
σ∗3

)(
∂σ

∂v

)2
∣∣∣∣∣
v=1

2

=

=
√

2
δ0

[v(1−v)]−
3
2

∣∣∣∣∣
v=1

2

. (38)

The last expression may be simplified to the form

ch(σ∗)
σ∗

− sh(σ∗)
σ∗2

+ 2
ch(σ)
σ∗3

=

=
ch(σ∗)
σ∗

+ 2
ch(σ)
σ∗3

(1− σ∗th(σ∗)) =
ch(σ∗)
σ∗

.

(39)

By virtue of (35) equation (38) takes the form(
∂σ

∂v

)2
∣∣∣∣∣
v=1

2

= [v(1− v)]−1

∣∣∣∣∣
v=1

2

= 4 (40)

or

∂σ

∂v

∣∣∣∣
v=1

2

= ±2. (41)

Consequently, we obtain

∂θ0
∂v

∣∣∣∣
v=1

2

= ±4(th(σ∗)− ξth(σ∗ξ)) =

= ± 4
σ∗

(1− σ∗ξth(σ∗ξ)) , (42)

Note that the sign ”+” corresponds to the transfer from
the stable part of slow curve to unstable one and the sign
”–” corresponds to transfer from the unstable part to the
stable one. Hence, trajectories that passed at first along
the stable part and after that – along the unstable part
(canards) correspond to the positive value (∂θ0/∂v)|v=1/2.

It follows from (33) that



δ1 = 4

1∫
0

∂θ0(ξ, 1
2)

∂v
V0

(
1
2

)
(1− σ∗ξth(σ∗ξ))dξ

1∫
0

ch2(σ∗)
ch2(σ∗ξ)

(1− σ∗ξth(σ∗ξ))dξ

=

= ± 32
δ∗0σ
∗

1∫
0

(1− σ∗ξth(σ∗ξ))2dξ

1∫
0

ch2(σ∗)
ch2(σ∗ξ)

(1− σ∗ξth(σ∗ξ))dξ

' ±2.22 .

(43)

Thus
δ∗ = δ0(1 + δ1ε+O(ε2)) (44)

corresponds to a canard and gives the required critical con-
dition for a thermal explosion (first limit of self-ignition).
The value

δ∗∗ = δ0(1− δ1ε+O(ε2)) (45)

corresponds to the false canard and gives the second limit
of self-ignition. The interval (δ∗ , δ∗∗) corresponds to
transitional regimes of combustion. For the difference of
the values δ∗ and δ∗∗ we have

δ∗ − δ∗∗ = 2δ0δ1ε+O(ε2) ' 15.58ε+O(ε2) (46)

For the first order reaction one may use the generalization
of the algorithm, worked out in [7], but in this case it may
be applied in the numerical form only. Thus, for ρ = 1 we
have at ε = 0.01 the value of δ = 1.02, and at ε = 0.02 the
value of δ = 0.98.

4. CRITICAL CONDITIONS OF CYLINDRICAL
REACTOR

Now, we put n = 1 in (1)–(2) and investigate the critical
conditions of thermal explosion for the cylindrical reactor.
In doing so, we have

ε
∂θ

∂τ
= η(1− η) eθ +

1
δ

(
∂2θ

∂ξ2
+

1
ξ

∂θ

∂ξ

)
,

ε
∂η

∂τ
= εη(1− η) eθ +

1
%

(
∂2η

∂ξ2
+

1
ξ

∂η

∂ξ

)
,

(47)

with boundary conditions
∂θ

∂ξ

∣∣∣∣
ξ=0

= θ

∣∣∣∣
ξ=1

= 0 ,
∂η

∂ξ

∣∣∣∣
ξ=0

=
∂η

∂ξ

∣∣∣∣
ξ=1

= 0. (48)

In the same manner as in the previous Section, we try
to find the slow one-dimensional stable-unstable integral
manifold in a parametric form

θ= θ(v, ξ, ε) = θ0(v, ξ) + εθ1(v, ξ) +O(ε2) ,

η= η(v, ξ, ε) = η0(v, ξ) + εη1(v, ξ) +O(ε2) ,
dv

dτ
= V (v, ε) = V0(v) + εV1(v) +O(ε2).

(49)

The factor δ will be calculated as asymptotic expansion
with respect to degrees of the small parameter ε:

δ = δ0(1 + εδ1) +O(ε2) . (50)

Given (49), system (47) results in:

ε
∂θ

∂v
V = η(1− η) eθ +

1
δ

(
∂2θ

∂ξ2
+

1
ξ

∂θ

∂ξ

)
,

ε
∂η

∂v
V = εη(1− η) eθ +

1
%

(
∂2η

∂ξ2
+

1
ξ

∂η

∂ξ

)
,

(51)

Setting ε = 0 in (10) we obtain the problem for the zero
order approximation of the integral manifold (8):

∂2θ0
∂ξ2

+
1
ξ

∂θ0
∂ξ

+ δ0η0(1− η0)eθ0 = 0,

∂2η0
∂ξ2

+
1
ξ

∂η0
∂ξ

= 0,
(52)

with boundary conditions

∂θ0
∂ξ

∣∣∣∣
ξ=0

= 0, θ0

∣∣∣∣∣
ξ=1

= 0. (53)

∂η0
∂ξ

∣∣∣∣
ξ=0

= 0,
∂η0
∂ξ

∣∣∣∣
ξ=1

= 0. (54)

Function η0 = η0(v) is a solution of the second equation in
(52) with boundary conditions (54). Since we have some
freedom of choice of the parameter v, we put η0(v, ξ) ≡ v.

The first equation in (52) takes the form
∂2θ0
∂ξ2

+
1
ξ

∂θ0
∂ξ

+ δ0v(1− v)eθ0 = 0. (55)

Now, we consider an auxiliary problem

y′′ +
1
ξ
y′ + aey = 0 .

y′(0) = y(1) = 0 .
(56)

It can be easily verified that function

y = 2 ln
2
√

2
a

(√
2
a ±

√
2
a−1

)
1 + ξ2

(√
2
a ±

√
2
a−1

)2 =

= 2 ln
2
(

1±
√

1−a2
)

a
2 + ξ2

(
1±
√

1−a2
)2 (57)

is a solution to (56). Obviously, for a = 2 the last equation
has a single solution, for a > 2 there are no solutions, and
for a < 2 there are two solutions. Of these two solutions,
the lower, corresponding to smaller temperatures, is stable,
and the upper one is unstable.

Problems (56) and (52), (53) coincide at a = δ0v(1 − v).
The greatest value of the right-hand side of this relation
equals to δ0/4 for v = 1/2. That is why the critical value of
coefficient δ equals to 4a∗ in its zero order approximation,
i. e., we obtain the approximate value for δ0 :

δ∗0 = 4a∗ = 8. (58)

Thus, for δ0 > δ∗0 system (55), (53) has no solutions, and
for δ0 = δ∗0 there are two solutions

θ+0 (ξ, v) = 2 ln
2(1 +

√
1− 4v(1− v))

4v(1− v) + ξ2(1 +
√

1− 4v(1− v))2
, (59)



θ−0 (ξ, v) = 2 ln
2(1−

√
1− 4v(1− v))

4v(1− v)− ξ2(1 +
√

1− 4v(1− v))2
, (60)

which stick together at the point v = 1/2; here θ−0 is stable,
and θ+0 is unstable. For δ0 < δ∗0 there are two solutions.

The following expressions are the zero order approxima-
tions for one-dimensional slow integral manifold:

θ = θ0(v, ξ), η = v,

where, as θ0, should be chosen one of solutions of boundary
problem (55), (53), regarded for δ0 = δ∗0 .

To obtain the problem for the first order approximation,
we substitute (49), (49) into (47), (48) and equate the
coefficients at ε:
∂2θ1
∂ξ2

+
1
ξ

∂θ1
∂ξ

+ δ0v(1− v)eθ0θ1 =

= δ0

(
∂θ0
∂v

V0 − (1− 2v)eθ0η1 − δ1v(1− v)eθ0
)
,

1
%

(
∂2η1
∂ξ2

+
1
ξ

∂η1
∂ξ

)
+ v(1− v)eθ0 = V0 ,

(61)

with boundary conditions

∂θ1
∂ξ

∣∣∣∣
ξ=0

= 0, θ1

∣∣∣∣∣
ξ=1

= 0. (62)

∂η1
∂ξ

∣∣∣∣
ξ=0

= 0,
∂η1
∂ξ

∣∣∣∣
ξ=1

= 0. (63)

Multiplying the second equation in (61) by ξ, integrating
by ξ from 0 to 1, and taking into account (63), we derive

1∫
0

ξV0dξ = v(1− v)

1∫
0

ξeθ0(ξ,v)dξ+

+
1
%

1∫
0

∂

∂ξ

(
ξ
∂η1
∂ξ

)
dξ, (64)

whence

1
2
V0 = v(1− v)

1∫
0

ξeθ0(ξ,v)dξ . (65)

Now, we calculate the integral in the right-hand side of
(65) for v = 1/2:
1∫

0

ξe
2 ln 2

1+ξ2 dξ =

1∫
0

ξ
4

(1 + ξ2)2
dξ = −2

1
1 + ξ2

∣∣∣∣1
0

= 1 .(66)

Hence,

V0

(
1
2

)
= 2 · 1

4
=

1
2
. (67)

For v = 1/2 the first equation in (61) is as follows:

∂2θ1
∂ξ2

+
1
ξ

∂θ1
∂ξ

+
δ0
4
eθ0(ξ,

1
2 )θ1 = f(ξ),

f(ξ) = δ0

(
∂θ0(ξ, 1

2)

∂v
V0

(
1
2

)
− δ1

4
eθ0(ξ,

1
2 )

)
.

(68)

Let us find ∂θ0/∂v|v=1/2 (δ0 = 8).
1
2
θ0(ξ, v) = ln(α±

√
α2−1)

− ln(1+ξ2(α±
√
α2−1)2) + ln 2α ,

α=
√

2
δ0

[v(1− v)]−
1
2 =

1
2

[v(1− v)]−
1
2 .

(69)

Now, we differentiate the first equation in (69) by v.

Denotind κ(α) = α±
√
α2 − 1 (κ(1) = 1) we have

1
2
∂θ0
∂v

=
{

1
α

+
±1√
α2 − 1

− ±2κ2ξ2

(1 + κ2ξ2)(
√
α2 − 1)

}
∂α

∂v
=

=

{√
α2 − 1
α

± 1− κ2ξ2

1 + κ2ξ2

}
1√

α2 − 1
∂α

∂v
.

(70)

Taking into consideration, that
∂α

∂v
= −1

4
[
v(1− v)

]− 3
2 (1− 2v) =

1
4

(2v − 1)
[
v(1− v)

]− 3
2 , (71)

1√
α2 − 1

=
1√

1
4v(1−v) − 1

=

√
4v(1− v)√

1− 4v + v2
=

2[v(1− v)]
1
2

|2v − 1|
, (72)

we have for (70):
1
2
∂θ0
∂v

∣∣∣∣
v=1

2

=

±1− ξ2

1 + ξ2

{
1

2v(1−v)
· 2v − 1
|2v − 1|

}∣∣∣∣
v=1

2

= ±2
1− ξ2

1 + ξ2
,

∂θ0
∂v

∣∣∣∣
v=1

2

= ±4
1− ξ2

1 + ξ2
.

(73)

Here sign ”+” corresponds to the duck-trajectory.

The homogeneous boundary problem (68), (62) has a
nontrivial solution ( i. e. an eigenfunction, corresponding
to the zero eigenvalue)

ϕ0(ξ) =
1− ξ2

1 + ξ2
. (74)

Hence, the solvability condition of nonhomogeneous bound-
ary problem (68), (62) is as follows:

1∫
0

f(ξ)ϕ0(ξ)dξ = 0 (75)

or
1∫

0

(
∂θ0(ξ, 1

2)

∂v
V0

(
1
2

)
− δ1

4
eθ(ξ,

1
2 )

)(
1− ξ2

1 + ξ2

)
dξ = 0, (76)



whence

δ1 =

4

1∫
0

∂θ0(ξ, 1
2)

∂v
V0

(
1
2

)1−ξ2

1+ξ2
dξ

1∫
0

eθ(ξ,
1
2 ) 1− ξ2

1 + ξ2
dξ

=

= ±8

1∫
0

(
1− ξ2

1 + ξ2

)2

dξ

1∫
0

4
(1+ξ2)2

1− ξ2

1 + ξ2
dξ

=

= ±2

1∫
0

(
1− ξ2

1 + ξ2

)2

dξ

1∫
0

1− ξ2

(1 + ξ2)3
dξ

= ±16
4− π
4 + π

' ±1.9232.

(77)

After all, we have the following:

δ∗ = δ0(1 + δ1ε+O(ε2)) (78)

corresponds to the duck-trajectory and gives a desired
critical condition of thermal explosion, and the value

δ∗∗ = δ0(1− δ1ε+O(ε2)) (79)

corresponds to the second limit of self-ignition.

For the difference δ∗ − δ∗∗ we have

δ∗ − δ∗∗ = 2δ0δ1ε+O(ε2) ' 30.77ε+O(ε2). (80)

As for the plane-parallel reactor, in the case of the first
order reaction for the cylindrical reactor, one has to apply
numerical algorithms. In doing so, for ρ = 1, we have, for
example, the following values of δ: δ = 2.02 for ε = 0.01,
and δ = 2.33 for ε = 0.02.

5. CONCLUSION

The obtained results permit to work out the algorithms
of asymptotic representations of the critical values of the
parameter of initial conditions and to describe the transfer
regimes in thermal explosion problem.

This approach provides the control over self-ignition pro-
cess and the stability of the perspective sources of power.
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