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Abstract: Different adaptive control algorithms have been developed for atten-
uating vibrations on systems such as electromechanical devices. In this work
it is introduced the use of nonuniform sampling methods reducing the mean
sampling rate, with the aim of minimizing the execution time of such algorithms.
In particular, the proposed algorithm is a feedforward adaptive vibration controller
which generates sinusoidal signals whose amplitudes and phases are updated by the
adaptation algorithm at randomized sampling times. Such signals are applied at
the system obtaining a minimization of the vibrations. Simulation results show the
effectiveness of the adaptive control approach, allowing an important increment in
the mean sampling period.
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1. INTRODUCTION

A large number of electromechanical systems are
affected by repetitive disturbances with sinusoidal
form as is the case of rotating machines. The
reduction of the effects of such vibrations can be
crucial since those vibrations can damage internal
parts of the devices or lead to the reduction of the
mechanical strength, not allowing a proper oper-
ation, for instance in relation to the precision. In
order to minimize those sinusoidal perturbations
different techniques have been developed using
passive and active elements, being remarkable the
active noise control techniques based on digital
signal processing, (Kuo and Morgan, 1996; El-
liot, 2001).

In particular, adaptive filtering methods, (Widrow
and Stearns, 1985; Goodwin and Sin, 1984; El-
liot, 2001), are able to compensate not only large
vibrations near critical resonance points, but also
during non stationary states. Generally, the adap-

tive vibration controller has to generate signals
at the synchronous frequency, which are related
with the perturbation signal, in order to com-
pensate its effects. With this purpose, different
filtering strategies have been developed in the
time and harmonic domains. For instance, LMS-
type adaptive algorithms have proven them ef-
fectiveness in different real situations as can be
rotating machines, (Nonami and Liu, 1999; J. Shi
and Qin, 2004; Zhang and Markert, 2001).

On the other hand, the use of digital signal pro-
cessing techniques for control purposes is increas-
ing thanks to the higher calculation power and
bandwidth of the modern digital signal processors
and related hardware as reconfigurable hardware
(FPGA). However, the increasing complexity of
the task performed for the different control sys-
tems, as communication or fault detection, makes
interesting the reduction of the sampling rate for
allowing real-time performance of the overall sys-
tem. In this sense, the use of randomized sampling



techniques has led to increasing the working band-
width without decrementing the sampling time,
since its main advantage is the elimination of the
aliasing.

These techniques are known as digital alias-free
signal processing (DASP), and their advantages
have shown its special interest in the analysis of
high frequency signals. In particular, the use of
pseudorandom sampling techniques can improve
the useful bandwidth with high sampling times in
the mean, (I. Bilinskis, 1992). On the other hand,
these techniques add, logically, some drawbacks
related directly to the stochastic nature of the
resulting dynamics.

The main purpose of this work is the introduction
of an adaptive vibration control scheme which
applies DASP techniques, showing that it is pos-
sible to improve the calculation time maintaining
the reduction of the vibrations. In this paper,
the proposed scheme is a modified version of an
adaptive feedforward controller of least-squares
type, (Widrow and Stearns, 1985), which gener-
ates periodic compensating signals ideally having
adequate frequency, magnitudes and phases re-
spect to the synchronous disturbances in order to
minimize the resulting vibrations. In such scheme,
the main characteristic is the application of a
randomized adaptive algorithm for obtaining the
estimated parameter vector.

The paper is organized as follows. The basic
properties of the randomized signal processing are
briefly described in section 2. Section 3 describes
the problem statement and the scheme of the
modified adaptive feedforward control strategy to
reduce the sinusoidal perturbations. Simulation
results which illustrate the effectiveness of the
presented approach to reduce the vibrations in
the system are presented in section 4. Finally,
conclusions and future research perspectives end
the paper in section 5.

2. RANDOMIZED SIGNAL PROCESSING

The importance of digital signal processing (DSP)
today is out of discussion, being the fast Fourier
transform (FFT) one of the fundamental tools.
DSP techniques are based, in general, on the
uniform and periodic sampling of signals, leading
to the well-known problem of aliasing. This phe-
nomenon appears similarly in multirate systems
which are today profusely used. In contrast, the
aliasing problem disappears applying randomized
sampling times, for any finite sampling-time in the
mean, leading to DASP techniques, (I. Bilinskis,
1992; http://www.edi.lv/dasp-web/dasp-papers/dasp-
papers.html, n.d.).
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Figure 1. Different sampling techniques. a) Regu-
lar sampling b) Randomized sampling.

However, the aliasing-free property is due to the
theoretically possible zero (infinitesimally small)
distance between two random sampling instants.
In practice, this is not possible and a minimum
distance must be defined. Although the alias-free
condition is not fullfilled, this minimum time dis-
tance is directly related to the equivalent Nyquist
frequency using DASP for any mean sampling-
time, (I. Bilinskis, 1992; http://www.edi.lv/dasp-
web/dasp-papers/dasp-papers.html, n.d.). For ex-
ample, in Fig. 1, the uniform sampling and ran-
domized sampling of a signal is represented. In the
first case the sampling frequency is 5Hz and then
the maximum frequency to be consider 2.5Hz. In
the second case, the mean sampling frequency is
2Hz while the maximum frequency to be con-
sider is 11.5/2 Hz since the minimum sampling
distance is 1/11.5 s. That is, using a nonregular
sampling technique with a higher sampling period
in the mean the applicable frequency bandwidth
is higher than using a regular sampling time.

One of the main drawbacks of the DASP tech-
nique is that very extended DSP techniques, as
the FFT algorithm, are not valid and, in general,
specific algorithms must be developed for using
nonuniform sampling in any application. The dis-
crete implementation of the Fourier transform for
a signal x(t) with randomized sampling times can
be written as

X (f) =

n
∑

k=1

x(tk)e−2πftk j (1)

with n the number of samples and tk the random-
ized sampling instants, which presents a very sim-
ilar implementation of an ordinary regular DFT,
but there is not a fast version like the FFT algo-
rithm. In order to show the validity of the DFT
transform (1), an example is considered applying
randomized sampling times of mean E[Tk] = 1s.,
with Tk = tk − tk−1, to a pure sinusoid signal of
frequency f = 10Hz. The resultant signal repre-
sentation in the frequency domain can be observed
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Figure 2. Spectrum of a one tone signal at 10Hz
sampled at 1Hz (mean) using DASP

in Fig. 2. The minimum distance between samples
is ∆k = 1/50s. and, then the equivalent Nyquist
frequency is 25Hz (the first frequency alias is
40Hz, not shown in the figure). Note that, if a reg-
ular sampling is utilized, the equivalent frequency
spectrum is obtained by mean of a sampling time
E[Tk] = T = 0.05s, that is, twenty times lower.

In Fig. 2, another characteristic derived from the
randomized sampling can be observed: the incre-
ment of the noise floor at non existent frequency
components in the original signal under analysis.
Although this property can be a serious drawback
in different applications, the use of specific recon-
struction techniques can avoid this problem.

In the following sections, the application of ran-
domized sampling for attenuating vibrations is
analyzed.

3. PROBLEM STATEMENT AND
ESTIMATION ALGORITHM

In this section it is presented an adaptive fil-
ter based on the LMS algorithm for attenuat-
ing vibrations which uses nonuniform sampling
techniques. In Fig. 3, the basic block diagram of
an adaptive filter is displayed. The objective is
to develop a particular version of the adaptive
scheme of such figure with a nonregular sampling
time in order to minimize the calculation power
required, taking into account the previously pre-
sented theoretical considerations about the alias-
ing effect. Note that the main objective is not the
evaluation of an adaptive scheme in particular but
the application of DASP techniques for vibration
reduction.

The scheme selected for randomizing is an adap-
tive feedforward vibration controller (AFVC),
which has been successfully applied using stan-
dard periodic sampling techniques, with an ade-
quate sampling frequency, (J. Shi and Qin, 2004).
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Figure 3. Block diagram of an adaptive filter

The scheme of the randomized version of the
AFVC (RAFVC) is shown in Fig. 4. In such
scheme, there are two different inputs for the
controller: the signal y(t) where the perturbation
effect acts and the frequency of the sinusoidal
perturbation Ω, which is considered known in this
paper. The perturbation signal (continuous) may
be described as

d(t) = Ad sin(Ωt+ϕd) = Ad1
sin(Ωt)+Ad2

cos(Ωt)

and the output of the RAFVC will be also a
sinusoidal signal, defined by the next discrete
expression

ϑ(kT ) = Aϑ(j) sin(ΩkT + ϕϑ(j))

= As(j) sin(ΩkT ) + Ac(j) cos(ΩkT ) (2)

Analyzing this signal, two different discrete times
are observed: a regular and periodic discrete time
denoted by kT and a second discrete time repre-
sented by the sequence index j. The first regular
kT time represent the actualization time of the
perturbation correction signal ϕ(kT ) while the in-
dice j represents the randomized actualization of
the adaptive parameters of the controller at time
tj where Ac(j) and As(j) are adjusted to minimize
the effect of the synchronous disturbance. Note
that in the original adaptive scheme, the adapta-
tion instants tj and the uniform sampling-instants
tk = kT are coincident.

In this case, the desired output signal is considered
null and, then, r(j) = 0 and the performance
measure is given by

ξ(j) = E
{

ǫ2(j)
}

= E
{

y2(j)
}

(3)

This scheme is considered as a direct adaptive
method, (J. Shi and Qin, 2004).

3.1 Adaptive algorithm

The system outputs denoted by means of y(t) =
[

y1 y2 . . . yn

]T
are the input signals of the adap-

tive controller, being n the number of system
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Figure 4. Block diagram of the vibration controller including the RAFVC, with an output perturbation.

outputs. These signals are sampled in randomized
sampling instants tj , obtaining y(j) in discrete
time. The adaptive controller provides a discrete

signal vector ϑ(k) =
[

ϑ1 ϑ2 . . . ϑn

]T
which tries

to compensate the vibrations and each of the
signals ϑi follows the expression given in eq. (2).
In this case, a one-to-one relation between inputs
and outputs is considered. Note that the controller
output is defined for regular sampling instant
tk = kT .

In addition, the adaptive parameters in eq. (2) are
grouped in the vector

θ̂c(j ) =
[

A1s(j) A1c(j) A2s(j) A2c(j)

Ans(j) Anc(j)
]

T (4)

From Fig. 4 the output signal can be represented
as

y(t) = Gd(s)d(t) + Gcl(s)ϑ(t) (5)

where the transfer functions Gd(s) and Gcl(s)
describe the influence of the disturbance and the
input over the output y(t), respectively, and ϑ(t)
is the continuous version of the RAFVC controller
output, obtained with a zero order hold.

The design objective is the obtaining of the
RAFVC parameter vector θc which minimizes
the performance measure of eq. (3). As is shown
in the block diagram, the filtered-x variant of
the LMS algorithm is considered, (Widrow and
Stearns, 1985). This objective is fulfilled adjusting
the vector θc along the gradient direction ∆. As
this gradient is unavailable, the next unbiased
estimate of the gradient is used, (Widrow and
Stearns, 1985)

∆̂(j) = 2y(j)Gcl(q
−1

j )

[

sin Ωtj
cos Ωtj

]

(6)

where Gcl(q
−1

j ) represents the discrete version of
Gcl(s), being a transfer function whose param-
eters changes stochastically with tj . Thus, the
resulting system can be considered as a jump
discrete system, (Mariton, 1990).

However, since the parameter adaptation rate will
be chosen to be much lower than the closed-loop
dynamics described by Gcl(s), it makes sense to
replace this transfer function by a constant, for
example, λ/2. Consequently, the eq. (6) can be
rewritten as

∆̂(j) = λy(j)

[

sin Ωtj
cos Ωtj

]

(7)

Defining

ϕ(j) =















s1 c1 0 0 . . . 0 0 0
0 0 s1 c1 . . . 0 0 0
...
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. . .
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0 0 0 . . . s1 c1 0 0
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








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

with s1 = sinΩtj and c1 = cos Ωj and ϕ(j) is a
n × 2n matrix, the adaptive algorithm becomes

θ̂c(j) = θ̂c(j − 1) + γϕ(j)T y(j)

where γ is a real constant which must be cho-
sen such that the estimation process is much
slower that the closed-loop dynamics described by
Gcl(s), (J. Shi and Qin, 2004).

An important characteristic of the proposed
scheme observed in Fig. 4 derives from the nonuni-
form nature of the adaptation process and the
uniform nature of the compensation signal itself.

Note that the adaptive signals (and the below
presented estimation algorithm) depend on the
knowledge of the frequency Ω and noise and vari-
ations in the measured speed can lead to low
effectiveness in the vibration cancellation and sta-
bility problems, (Nonami and Liu, 1999). Those
problems must be considered in future works.

3.2 Stability

The performance of the standard LMS algorithm
is well-known, (Widrow and Stearns, 1985; El-
liot, 2001). However, the stochastic nature of the
actualization instants in the proposed adaptive
controller must be considered. The requisites for



stability can be resumed into two conditions: the
different random processes are stationary and in-
dependent and the adaptation process is suffi-
ciently slow. The first condition leads to a con-
stant input correlation matrix R and the second,
to fulfill the condition

0 < γ <
1

λmax

where λmax is the largest eigenvalue of the matrix
R.

From eq. (5) the discrete output y(j) can be inter-
preted as a deterministic sinusoidal signal sampled
randomly plus a discrete stochastic process. Then,
the randomized LMS algorithm considered fulfills
the required conditions if the random process tj
and any other random process actuating in the
system are stationary and independent, with a
sufficiently low γ.

4. SIMULATION RESULTS

This section presents simulation results which
show the effectiveness of the RAFVC adaptive
controller developed to reduce the vibrations
caused by sinusoidal perturbations. These simu-
lations have been performed using the java-based
Ptolemy II software developed in the University of
California at Berkeley. The system used as testbed
is described by the next equations:

y(t) = Gr(s)(r(t) + d(t))

where the transfer matrix is

Gr(s) =







10

1 + 1e − 3s

0.9

1 + 5e − 4s
−2

1 + 2e − 3s

7

1 + 8e − 3s







As can be observed in Fig. 5, where the scheme
of the proposed example is shown, the perturba-
tion signals are first considered in the input and,
being the reference signal zero, the objective is
to reduce the vibrations around the equilibrium
point. In particular, the block implementing the
randomized sampling process is shown in Fig. 6.
The mean sampling period is 2e − 2 s. while the
minimum time distance between samples is 1e −

4s., and the same regular period is used to calcu-
late the compensating sine and cosine signals. In
addition, the frequency of the perturbation signals
is 600Hz. Note that the adaptive estimation of the
coefficients is performed with a mean frequency of
50Hz which is much lower that the required using
a regular sampling period.

Fig. 7 shows the important reduction of the distor-
tion observed in this example for the selected ran-
domized adaptive algorithm, validating the pro-
posed scheme.

Figure 5. Implementation of the RAFVC adaptive
algorithm using Ptolemy II software.

Figure 6. Implementation of the randomized sam-
pling using PtolemyII.
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Figure 7. Elimination of the distortion in the
proposed system (Perturbation in the input).

The result of the randomized adaptation process
is shown in Fig. 8, where it is displayed the time
evolution of the parameters which define the am-
plitudes and phases of the compensation signals
generated by the adaptive vibration controller.
Such a figure shows the convergence of the param-
eters. In particular, the convergence rate which
appears in these simulations is obtained using a
constant γ = 0.04 in the adaptive algorithm.

An interesting feature of the scheme implemented
in Fig. 5 using Ptolemy II is the possibility of
remote access by mean of java applets. In par-
ticular, this example is accessible in the web page
http:/www.ehu.es/gaudee/jjugo/applets/rafvc/rafvc.html.

Similar considerations are valid for the elimination
of distortion when the perturbation signals act
in the output, as in the scheme proposed in Fig.
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4. Fig. 9 shows the elimination of the distortion
for sinusoidal perturbation signals in the output,
which is slower than in the previous case for this
particular example.

Finally, it should be noted that these results
have been obtained for a constant speed. In real
systems speed variations are very usual and their
effect reduces the effectiveness of the vibration
elimination and can lead to stability problems.
Such difficulties must be considered in future
works.

5. CONCLUSIONS

In this work the scheme of an adaptive vibration
controller using randomized sampling-time in the
estimation algorithm is presented. The use of such
a controller results in a reduction of the periodi-
cal perturbations observed in the system outputs
thanks to the compensation signals generated by
the proposed adaptive control scheme RAFVC,
while the calculation power is optimized. This im-
provement is obtained since the controller updates
the parameters which define the amplitudes and
phases of the compensation signals in randomized
time instants and those resulting signals effec-
tively counteract the effects of the perturbations.
On the other hand, the compensation signals are
generated regularly in periodic time instants.

The effectiveness of the developed randomized
adaptive controller has been shown by means of

simulation results, allowing an important reduc-
tion of the calculation time in the mean.

In conclusion, such a control strategy could pro-
vide an interesting solution, for instance, in high-
speed mechanical systems.

In future research works, the convergence of the
parameter vector should be compared with equiv-
alent schemes using regular sampling techniques.
In addition, different scheme alternatives can be
analyzed and possible real-time implementation
problems must be considered.
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