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Department of Math. Information Technology

University of Jyväskylä
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Abstract
The present work is devoted to the questions of anal-

ysis and synthesis of feedback systems, in which there
are controllable delay lines. The possibility of phase-
locked loop application for time delay control is con-
sidered.
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1 Introduction
Phase-locked loops (PLLs) are widely used in

telecommunication and computer architectures. They
were invented in the 1930s-1940s (De Bellescize,
1932; Wendt & Fredentall, 1943) and then intensive
studies of the theory and practice of PLLs were carried
out (Viterbi, 1966; Lindsey, 1972; Gardner, 1979 and
others).
After the appearance of an architecture with chips, op-

erating on different frequencies, the phase-locked loops
are used to generate internal frequencies of chips and
synchronization of operation of different devices and
data buses (Young et al., 1992; Egan, 2000; Kroupa,
2003; Razavi, 2003; Shu & Sanchez-Sinencio, 2005;
Manassewitsch, 2005).
Here we consider application of controllable delay

line and phase-locked loops for design of clock gen-
erators.

2 CONTROLLABLE DELAY LINES
In clocked circuits it is necessary that the delay was

by the one tact. For this purpose we need in a special
setting of parameters of delay lines, which will be de-
scribed in details. The generators, constructed on logic
elements and delay lines, are not high-stable with re-
spect to frequency [Ugrumov, 2000]. Therefore, for
their stabilization and synchronization by phase-locked
loops it is necessary to introduce a controllable param-
eter in delay line. A class of such delay lines, the block-
scheme of which is shown in Fig. 1, is considered.

Figure 1. Delay line.

The RC-chains are often used in circuit engineering
as delay lines [Ugrumov, 2000]. We assume that the re-
lation between the input u and the output x is described
by the following standard equation of RC-chain

RC
dx

dt
+ x = u(t), (1)

where R is a resistance, C is a circuit capacitance.
The relation between the input x and the output

v is described by the graph of “relay with hystere-
sis”function, which is shown in Fig. 2. Here µ1 and

Figure 2. Relay with hysteresis.

µ2 are certain numbers from the interval (0, 1). The
theory and practice of application of such relay blocks
in feedback systems is well described in [Popov, 1979;
Krasnosel’skii and Pokrovskii, 1983].
In the present work we consider only the functions

u(t), which takes the values either 0 or 1 on cer-
tain intervals. Therefore, the solutions x(t) of equa-
tion (1) are continuous, piecewise-differentiable and
piecewise-monotone functions. It follows that the
graph in Fig. 2 correctly defines the output v(t).
Further it will be shown that the hysteretic effect is

of great importance for synthesis of clock generators.



Figure 3. Clock generator on Block AND-NOT and delay line.

This effect always occurs in real (non-ideal) logic ele-
ments. Since the output of delay line is often the input
of logic element, it is convenient to connect such hys-
teretic effect with RC-chain and to consider it in the
frame of block-scheme in Fig. 1. In some cases for im-
provement of a quality of delay line operation it is pos-
sible to introduce additional block “relay with hystere-
sis”, which provides a required delay time and stability
of system operation.
We can show here the analogy with a classical study of

Watt’s regulator by I.A.Vyshnegradskii [Andronov and
Voznesenskii, 1949; Leonov, 2001]. Recall a main con-
clusion of Vyshnegradskii: “without friction the regu-
lator is lacking”. But if a friction “is not sufficient”,
then it is possible to introduce a special correcting de-
vice, dashpot, which provides a stable operation of sys-
tem. In the case now being considered the friction is
replaced by hysteretic effect and the above classical
scheme of reasoning is repeated. This becomes espe-
cially clear if we consider the synthesis of clock gener-
ators.
The application of methods and technique of the clas-

sical control theory [Burkin et al., 1996; Leonov et
al., 1996, Popov, 1979; Krasnosel’skii and Pokrovskii,
1983; Andronov and Voznesenskii, 1949] permits us to
find the solution of considered problems, applying very
simple mathematical constructions.

3 DELAY LINES FOR SYNTHESIS OF CON-
TROLLABLE CLOCK GENERATORS

Consider the block-scheme in Fig. 3 and, recall the
table for Block AND-NOT output

u1 u2 u
0 0 1
0 1 1
1 0 1
1 1 0

Truth table of Block AND – NOT
Let u2(t) = 0 for t < T, T > 0. Then u(t) = 1

for t < T and at the input x(t) there occurs (after a
transient process) the signal x(t) = 1. Suppose, x(t) =
1 on [0, T ]. Then u1(t) = 1 on [0, T ] and a system is
in equilibrium:

1 = u1(t) = x(t) = u(t), u2(t) = 0.

The inclusion of clock generator is realized by the
change of u2 from the state 0 to the state 1: u2(t) =
1, ∀t > T . Then on the certain interval (T, T1) we
have u(t) = 0. This implies that u1(t) = 1 for
t ∈ (T, T1), where

T1 = T + RC ln
1
µ1

(2)

and u1(t) = 0 on a certain interval (T1, T2).
Really, from equation (1) it follows that on (T, T1) we

have x(t) = e−αt, α = 1/RC. In this case u1(t) = 1
for t ∈ (T, T1), where T1 is from relation (2), and
u1(t) = 0 for t ∈ (T1, T2), where T2 will be deter-
mined below. From the latter relation it should be that
u(t) = 1 for t ∈ (T1, T2). This implies the following
relation

T2 = T1 + RC ln 1−µ1
1−µ2

, x(T2) = µ2.

In the case when µ1 = 1−µ2, µ2 ∈ (1/2, 1), we obtain

τ = T1 − T0 = T2 − T1 = RC ln µ2
1−µ2

,

T0 = T + RC ln 1
µ2

,

and 2τ -periodic sequence at the output u:

u(t) = 0, ∀ t ∈ [T0, T0 + τ),
u(t) = 1, ∀ t ∈ [T0 + τ, T0 + 2τ).

Thus, the block-scheme in Fig. 3 is a clock generator
with the frequency

ω =
1
2τ

=
(

2R ln
µ2

1− µ2

)−1

C−1. (3)

We compare this frequency with the frequency of har-
monic LC-oscillator:

ω = 1/
√

LC (4)

At present it is developed different methods of con-
trol of a frequency of harmonic oscillators by means of
a slow (with respect to the high frequency ω) change
of parameter C. It is especially widely extended the
phase-locked loops [Viterbi, 1966; Lindsey, 1972]. In
the past decade similar constructions are actively de-
veloped and applied to the clock generators with fre-
quency (3) [Solonina et al., 2000].

4 DELAY LINES FOR CLOCK IMPULSES
Consider the delay line, the block-scheme of which is

shown in Fig. 1. Let u(t) be 2τ -periodic sequence of
impulses:

u(t) = 0, ∀ t ∈ [0, τ), u(t) = 1, ∀ t ∈ [τ, 2τ). (5)



If we choose the initial data x(0, x0) = x0 so that the
relation

τ = RC ln
x0

1− x0
, x0 ∈ (1/2, 1), (6)

is satisfied, then x(τ, x0) = 1− x0, x(2τ, x0) = x0.
In this case the graph of 2τ -periodic function x(t) is
shown in Fig. 4.
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Figure 4. Periodic output of RC-chain.

It is well known [Leonov, 2001] that for all other so-
lutions of equation (1) x(t, y0) the following relation

lim
t→+∞

(x(t, x0)− x(t, y0)) = 0 (7)

is satisfied. If we choose x0 > µ2, 1 − x0 < µ1, then
relation (7) implies that after transient process, at the
output v (of delay line) we obtain 2τ -periodic sequence
of impulses:

v(t) = 0, ∀ t ∈
[
RC ln x0

µ1
, τ + RC ln x0

1−µ2

)
,

v(t) = 1, ∀ t ∈
[
τ + RC ln x0

1−µ2
, 2τ + RC ln x0

µ1

)
.

(8)
Note that for µ1 = 1 − x0 + ε, µ2 = x0 − ε, where
ε > 0 is a small parameter, from (8) we have

v(t) = 0, ∀ t ∈ [τε, τ + τε),
v(t) = 1, ∀ t ∈ [τ + τε, 2τ + τε),

(9)

where

τε = RC ln
(

x0

1− x0 + ε

)
−−−→
ε→0

τ. (10)

Recall that x0 ∈ (1/2, 1) and τ is determined from
relation (6).
Thus, the block-scheme in Fig. 1 realizes asymptoti-

cally the time delay τ : after transient process (see re-
lation (7)) at the output v we observe relation (9), in
which case relation (10) is satisfied.
Consider now a certain extension of the above case.

Let u(t) be a certain sequence of clock impulses (not
necessarily 2τ -periodic) such that

u(t) = 0, ∀ t ∈ [2kτ, (2k + 1)τ), k = 0, 1, . . .

and on each of intervals ((2k + 1)τ, 2k + 2)τ) it can
take the value either 0 or 1.
Now we consider the case when the delay line oper-

ates in working conditions after transient process. In
this case, taking into account the above reasoning, we
can assume that for the certain fixed k there occur the
following restrictions:

u(t) = 1, ∀ t ∈ [(2k + 1)τ, 2(k + 1)τ)
x((2k + 1)τ) ∈ (0, 1− x0),

where x0 satisfies relation (6).
We shall show that in this case it can be made such a

choice of parameters of delay line, for which asymp-
totically (at ε → 0) the delay time of unit impulse is τ .
For this purpose we can take the obvious inequalities

x(t, (2k + 1)τ, 0) ≤ x(t, (2k + 1)τ, x((2k + 1)τ) ≤
≤ x(t, (2k + 1)τ, 1− x0), ∀ t ≥ (2k + 1)τ.

Here x((2k+1)τ, (2k+1)τ, y0) = y0. By the previous
relations µ1 = 1− x0 + ε, µ2 = x0 − ε we obtain

v(t) = 0, ∀ t ∈ ((2k + 1)τ, (2k + 1)τ + τε),
v(t) = 1, ∀ t ∈ ((2k + 1)τ + τ̃ε, (2k + 1)τ + τε + ˜̃τε).

Here

τ̃ε = RC ln(
1

1− x0 + ε
), ˜̃τε = RC ln(

x0 − ε

1− x0 + ε
).

Choosing x0 = 1 − √ε, we obtain the following for-
mulas for parameters of delay line, which shifts unit
impulse with accuracy up to

√
ε for time τ :

µ1 =
√

ε+ε, µ2 = 1− µ1, RC = τ/ ln
1√
ε
. (11)

This implies that for the asymptotical shift of unit im-
pulse for time 2τ it is necessary to apply two-stage de-
lay line with parameters (11) (Fig. 5).

Figure 5. Two-stage delay line.

5 CONCLUSION
In the present work it is mathematically rigorously

shown that RC-chain can be used as a controllable de-
lay line for different problems of circuit engineering if
the chain is sequentially connected with hysteretic re-
lay. This relay is either artificially introduced or shows
itself as non-ideality of logic elements.
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