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Abstract
Ground quasienergy levels in the kicked double-well

system are investigated both analytically and numeri-
cally. The splitting between two lowest levels is de-
scribed using resonances overlap criterion in the frame-
work of chaotic instanton approach. Results of numer-
ical calculations of quasienergy spectrum are in good
agreement with derived phenomenological formula.
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Introduction
It is well known that tunneling phenomenon in

double-well potential is connected with instan-
tons (Rajaraman, 1982). Instanton contribution to tun-
neling amplitude determines the splitting of two ground
energy levels. It was shown in the papers by another
authors that dynamical tunneling probability can be
controlled by external signals. Namely, in perturbed
double-well potential a rate of tunneling can be many
orders of magnitude greater than in undriven one (Lin
and Ballentine, 1990). Furthermore, the tunneling am-
plitude grows as the number of frequency components
of perturbation increases (Igarashi and Yamada, 2006).
The decreasing of tunneling rate was found for spe-
cific parameter values of the driving force as well
(Grossmann et al., 1991). In this paper we concentrate
on the dynamical tunneling in kicked double-well po-
tential.
Dynamical tunneling phenomenon as well as the

closely related chaos assisted tunneling play an impor-
tant role in the quantum behavior of some real physi-
cal systems. For example they determine the splittings’
enhancements between highly excited states of sym-
metric molecules (Keshavamurthy, 2003) and statistics
of tunneling rates for a hydrogen atom placed in par-
allel, uniform, static electric, and magnetic fields, in
the presence of chaotic classical dynamics (Delande

and Zakrzewski, 2003). Dynamical tunneling in a
sodium Bose-Einstein condensate was both experimen-
tally and theoretically studied in the Ref. (Hensinger et
al., 2004).
Analytic chaotic instanton approach was proposed in

order to describe enhancement of tunneling in one-
dimensional spatially periodic potential (Kuvshinov et
al., 2002), (Kuvshinov et al., 2003), (Kuvshinov and
Kuzmin, 2005). Alternative approaches exploiting the
mathematical apparatus of quantum field theory were
suggested in (Aoki et al., 1998), (Jirari et al., 2001).
The first approach uses nonperturbative renormaliza-
tion group for analysis of tunneling in quantum me-
chanics (Aoki et al., 1998). The later one is based on
quantum instantons which are defined using an intro-
duced notion of quantum action (Jirari et al., 2001).
In this paper we adopt analytic chaotic instanton ap-

proach to double-well system and regard perturba-
tion of the kick type for the system under investiga-
tion. We obtained phenomenological formula which
describes the dependence of ground quasienergy split-
ting on strength and frequency of perturbation. Numer-
ical calculations of quasienergy spectrum levels were
performed to check analytical results.

1 Instantons in kicked double-well potential
Hamiltonian of the particle in the double-well poten-

tial can be written in the following form

H0 =
p2

2m
+ a0 x4 − a2 x2, (1)

where m - mass of the particle, a0, a2 - parameters of
the potential.
We consider the following perturbation

Vper = ϵ x

+∞∑
n=−∞

δ(t − nT ), (2)
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Figure 1. Stroboscopic plot for the kicked double-well potential.
Closed curves correspond to regular trajectories, scattered points to
chaotic ones. The model parameters are m = 1, a0 = 1/128,
a2 = 1/4, ϵ = 0.01, ν = 0.5.

where ϵ - strength of the perturbation, T - period of the
perturbation, t - time.
Full Hamiltonian of the system is the following:

H = H0 + Vper. (3)

Euclidean equations of motion of the particle in the
double-well potential have a solution - instanton. In
phase space of nonperturbed system instanton solution
lies on the separatrix. Perturbation destroys separa-
trix forming stochastic layer. In this layer a number
of chaotic instantons appears. Chaotic instanton can be
written in the following form

xchaos = xinst + ϵ∆xchaos.

It is a solution of the Euclidean equation of motion.
Here xchaos and xinst - chaotic and nonperturbed in-
stanton solutions, respectively, ∆xchaos - stochastic
correction.
We use the following assumptions:

1. small perturbation (ϵ < 0.1),
2. uniform stochastic layer (see fig.1),
3. Euclidean chaotic instanton action is equal to non-

perturbed instanton action corresponding to some
nonmaximal energy. It can be approximated by
the following linear form (see (Kuvshinov et al.,
2003))

S[xchaos(τ, ξ)] = S[xinst(τ, 0)]−α

√
m

a2
ξ, (4)

where S[xinst(τ, 0)] = 2
√

ma
3/2
2 /(3 a0) - non-

perturbed instanton action, α = (1 + 18 ln 2)/6 -
numerical coefficient, E - energy, Esep - energy on
separatrix and ξ = Esep − E.

2 Phenomenological formula
When the separatrix is destroyed and stochastic layer

is formed under the action of the perturbation a number
of chaotic instantons appears. The width of the stochas-
tic layer determines their contribution to the tunneling
amplitude. The stochastic layer width estimated us-
ing resonances’ overlap criterion. We calculated the
parameter of the resonances’ overlap for this purpose.
It is equal to relation of the resonance width in the
frequency scale (∆ω) and the distance between reso-
nances (δω). First one is estimated as a frequency of
oscillations of the value Ψ = Θ − ντ , where Θ - an-
gle variable for the particle in the system, ν = 2π/T
is a perturbation frequency. The resonance width is the
following (see chapter 5 in (Sagdeev et al., 1988))

∆ ω ∼
√

ϵ ν ω2

∆H
, (5)

where ∆H = Esep −E - distance from the separatrix,
ω - frequency of the particle oscillations.
The distance between resonances is calculating using

the expression for the resonance levels ωn = n ν.
Thus one can obtain

δ ω = ωn+1 − ωn = ν. (6)

Using two last expressions (5) and (6) the parameter of
the resonances’ overlap can be written in the following
form

K =
∆ω

δω
∼

[
ϵ ω2

ν ∆H

]1/2

&
[ ϵ ν

∆H

]1/2

. (7)

Overlap parameter is equal to unity on the boundary of
the stochastic layer. Using equation (7) we can write
the expression for the width of the stochastic layer in
the following way

∆Hs = Esep − Ebor ≈ k̃ ϵ ν, (8)

where Ebor is the energy on the border between
stochastic and regular regions, k̃ - some numerical pa-
rameter which can not be obtained in the framework of
the criterion used.
The tunneling amplitude for the perturbed system is

a sum of the amplitude in the nonperturbed case and
the amplitude of tunneling via chaotic instantons. The
later can be evaluated by integration over action of the
tunneling amplitude in nonperturbed system. Using ex-
pression (4) this integral could be transformed to the
integral over the energy from zero up to the width of
the stochastic layer (8):

Achaos = α

√
m

a2
Ñ

∫ ∆Hs

0

d ξ

∫ +∞

−∞
d c0×

×
√

S[xchaos(τ, ξ)] exp (−S[xchaos(τ, ξ)]), (9)



where Ñ is a normalize factor. To calculate contribu-
tion of chaotic instantons we use approximate expres-
sion for the chaotic instanton action (4) and assump-
tions from the previous section. Integration over c0

gives the contribution of zero modes (Vainshtein, A.I.
et al., 1982). As the result we get the following expres-
sion for the amplitude:

A = Ainst + Achaos ≈ (10)

≈ Ñ
√

Sinst e−Sinst

Γ exp

(
α

√
m

a2
∆Hs

)
,

where Ainst is tunneling amplitude in nonperturbed
system, Γ - a time of the tunneling which is put to infin-
ity at the end. The last exponential factor in the expres-
sion (10) is responsible for the tunneling enhancement
in the perturbed system. In the nonperturbed case the
width of the stochastic layer is equal to zero and the
expression (10) coincides with the known expression
describing the ordinary tunneling.
We can write phenomenological formula for

quasienergy splitting (∆η) using the expression (10):

∆η(ϵ, ν) = 2

√
6
π

√
Sinst e−Sinst

(1 + k ϵ ν), (11)

where

k = α

√
m

a2
k̃.

We fix this phenomenological parameter value using
the results of numerical simulations. For this purpose
we perform the linear fitting of the numerical data for
the dependencies on the perturbation strength and take
average value of the parameter over these dependen-
cies. As the result we have single parameter k for our
phenomenological formula explaining all these depen-
dencies.

3 Numerical calculations
For the computational purposes it is convenient to

choose as basis vectors the eigenvectors of harmonic
oscillator. In this representation matrix elements of
Hamiltonian (1) and the perturbation (2) are real and
symmetric. They have the following forms (n ≥ m):

H0
m n = δm n

[
~ω

(
n +

1
2

)
+

+
g

2

(
3
2

g a0 (2m2 + 2m + 1) − a′
2(2m + 1)

)]
+δm+2 n

g

2
(g a0(2m + 3) − a′

2)
√

(m + 1)(m + 2)+

+ δm+4 n
a0g

2

4

√
(m + 1)(m + 2)(m + 3)(m + 4),

Vm n = ϵ δm+1 n

√
g

2
√

m + 1, (12)

where g = ~/mω and a′
2 = a2 + mω2/2, ~ - Planck

constant which we put equal to 1, ω - frequency of har-
monic oscillator which is arbitrary, and so may be ad-
justed to optimize the computation. We used the value
ω = 0.2 with parameters m = 1, a0 = 1/128,
a2 = 1/4. In numerical simulations size of matrices
was chosen to be equal to 200× 200. Simulations with
larger matrices give the same results.
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Figure 2. Quasienergy spectrum for the ten levels with the low-
est average energy. The model parameters are m = 1,
a0 = 1/128, a2 = 1/4 and ν = 0.5. Thick lines - dou-
blet with the minimal energy.

We calculate eigenvalues of the one period evolu-
tion operator e−iHT e−iV and obtain quasienergy levels
which are related with the evolution operator eigenval-
ues through the expression ηk = i ln λk/T . Then we
get the ten levels with the lowest average energy which
is calculated using the formula ⟨vi|H0 +V/T |vi⟩ (|vi⟩
are the eigenvectors of the one period evolution opera-
tor). The dependence of quasienergies of this ten lev-
els on the strength of the perturbation is shown in the
figure 2. Two levels with the minimal average energy
(thick lines in the figure 2) has a linear dependence on
the strength of the perturbation in the considered re-
gion. They are strongly influenced by the perturbation
while some of the quasienergy states are not.
Performed numerical calculations give the depen-

dence of the quasienergy splitting on the strength
(fig.3(a)) and the frequency (fig.3(b)) of the perturba-
tion. Numerical results are in good agreement with the
phenomenological formula (11) in the regions of per-
turbation strength and frequency which are shown in
the figures 3(a) and 3(b).
Analytical dependence of the quasienergy splitting on

the strength and the frequency of the perturbation (11)
is linear. Numerical points lie close to the analytical
results and have linear dependence as well (fig.3). The
agreement between numerical simulations and analyti-
cal expression is good in the parametric region consid-
ered.
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Figure 3. Quasienergy splitting as a function of the strength (a) and
frequency (b) of the perturbation. Lines - phenomenological formula,
points - numerical results. The model parameters are m = 1,
a0 = 1/128, a2 = 1/4.

In addition to the results for the quasienergy splitting it
should be mentioned the connection of this splitting to
the tunneling phenomenon. As shown by formulas (8),
(10) and (11) the growth of splitting (when the strength
or frequency of perturbation rises) increases tunneling
amplitude as well. But this enhancement of tunneling
results in the strengthening of the small tunneling oscil-
lations rate, whereas the initial wave packet as a whole
is frozen.

Conclusions
Double-well system is investigated in presence of ex-

ternal kick perturbation. Analytic chaotic instanton ap-
proach is applied for this system in order to obtain the
phenomenological formula for the ground quasienergy
splitting. The formula has the single numerical param-
eter which is fixed from the numerical results. This
formula describes ground quasienergy splitting as a
function of strength and frequency of perturbation. It
predicts linear dependence of the ground quasienergy
splitting on these parameters. Numerical results for the
quasienergy splitting as a function of the perturbation
frequency and strength demonstrate linear dependence
as well. They are in a good agreement with the analyti-
cal formula. The only restriction is that the perturbation

strength has to be sufficiently small (in the case consid-
ered ϵ . 0.1) in order the chaotic instanton approach
used to be valid.
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