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chaotification method makes an originally non-chaotic CML

chaotic and enhances the chaos of an originally chaotic CML,
and that the method is applicable to CMLs with different

coupling structures.

This paper is organized as follows. In Sec. 2, the concept
of Li-Yorke chaos and the Marotto theorem are introduced. In
Sec. 3, the chaotification algorithm of the CML is described,
and some conditions for choosing the control parameter
are obtained; moreover, the controlled CML with certain
parameter values is proved to be chaotic in the sense of Li-

The coupled map lattice (CML) as a spatiotemporakorke. Simulations on controlling some typical CMLs by
chaotic system was proposed in 1983 [1]. Since it is @sing the proposed chaotification method are demonstrated

simple model with most essential features of spatiotemporg]{ Sec. 4. The last section gives some concluding remarks.
chaos, the CML has been extensively studied in the fields of

bifurcation and chaos, pattern formation, physical biology
and engineering. Recently, the CML has been applied in |
cryptography [2], [3], [4], [5], where spatiotemporal chaos
in the CML is very desirable and plays a key role. There

's a method proposed, by shifting the binary representaﬂci_r} and Yorke states that any one-dimensional discrete interval

of the CML output the first several bits, to chaotify the . . . . :
CML [6], where the investigation of chaotification of the ir;]aap s?riwlneg cz?itsscr)lr?dfg?r;?aco);bil:] %ﬁg%ﬁfﬂgggﬁ;g?&;gi
CML is numerical. Nevertheless, a mathematically rigorous P

and effective chaotification method for CML is desirableSyStems and was lately generalizeditdimensional discrete

. - . . Systems by Marotto [9]. A correct proof of the Marotto
which can make an originally non-chaotic dynamical SySter{heorem is given in [11]

chaotic, or can enhance the existing chaos of a chaotic o )
system. Some mathematically rigorous chaotification meth- Theorem 1:(Modified Marotto Theorem) Consider the
ods have been developed (see, e.g. [7] and some referengifgensional discrete system
therein) since the first mqthematical chaotification method Xpi1 = F(x1), xi€ R",
proposed by Chen and Lai [8].

Similar to the Chen-Lai method [8], a chaotification al-whereF is a map fromR" to itself. Assume tha#” has a
gorithm is proposed in this paper to chaotify a CML. Infixed pointx* satisfyingx® = F'(x*).
the controlled CML, a state feedback in each dimension Moreover, assume that

Abstract— Chaotification of a spatiotemporal coupled
logistic-map lattice via a state feedback control with a mod-
operation is investigated. A mathematically rigorous proof
shows that the controlled system satisfying certain parameter
conditions is chaotic in the sense of Li-Yorke and Devanay,
respectively. Moreover, the chaotification method is applicable
to other coupled logisic-map lattices even with different cou-
pling modes. Simulation results have illustrated the effects and
verified the correctness of the theoretical analysis.

I. INTRODUCTION

L1-YORKE CHAOS ANDMAROTTO THEOREM

The first precise definition of discrete chaos proposed by

k=0,1,2,...,, (1)

is applied to guarantee the system trajectory expanding in 0
all directions, and then a mod-operation is used to “fold”
the trajectories back into a compact region whenever the
expansion takes them to move out of it. Moreover, sufficient
conditions for the feedback gain parameter are derived,
under which the controlled CML is proved to have a snap-
back repeller. According to the Marotto theorem [9], it is,
thus, chaotic in the sense of Li-Yorke. Moreover, the above
chaotification method with certain feedback parameter values
is suitable for chaotifying other coupled logistic-map lattices
with different coupling topologies. Finally, the chaotification
method is applied to control some typical CMLs by choosing
suitable control parameters. Simulation results show that the

(ii)
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F(x) is continuously differentiable in a neighbor-
hood of x*, and all eigenvalues oD F'(x*) have
absolute values large than 1, whepd"(x*) is the
Jacobian ofF’ evaluated ak*, which implies that
there existr > 0 and a norm/| - || in R™ such that
F is expanding inB,.(x*), the closed ball of radius
r centered ak™ in (R™,||-]);

x* is a snap-back repeller af with F(x%) =
x*, xg # x*, for somexy € B,.(x*) and some
positive integern, where B,.(x*) denotes an open
ball of radiusr centered atx* in (R",| - |]).
Furthermore,F' is continuously differentiable in
some neighborhoods aofy, x1,...,X,,_1, respec-
tively, anddet[ DF'(x;)] # 0, wherex; = F(x;_1)
forj=1,2,...,m.

Then, system (1) is chaotic in the sense of Li-Yorke.



[1l. CHAOTIFICATION ALGORITHM DESIGNED FORCML  max {|a(1 — €)(1 — 227) + p| + |ae(1 — 2277 1) : j =1,..., L},

A one-way coupled logistic-map lattice, one of the most* € [0,1]. , 145
intensively investigated CML, is described by By taking r = Ti—ayz: One  has
j i j— i DG(X)||so : X € By (x* = 1-— 2(1+6)2 + .
o= Q-ofeh el @ mnUPeel ()} = a(1- ) + 0

_ Under the theorem conditiony > « + +/1+ 4, one has
where f(z) = ax(1—x), ], represents the state variable for| DG (x)||0e > a(1- (2(1+<;) +u > 1, hence,G(x) is
. N . . . . . oo K n—a 2 1 )
thejth sng G=1,2,...,L; Listhe number Qf the sites in the expanding for alk € B, (x").
CML) at time k (k =0,1,2,...), e € (0,1) is the coupling - )
. i Next, similar to the proof of Theorem 3 in [13], [14],
strength, and: € (0, 4] is the parameter of the logistic map. |, . ~L _
) S o I : defineG(x) = F(x) + px — 1, and v(x) = max{0,x —
The periodic boundary condition;) = =’ for all k, is used - - A = T
: G(x)} = [max{0,z1 — G(x1)}, ..., max{0, z, — G(z,)}]".
in the CML. . C . .
1 T . . Since F(0) = 0 and F' is differentiable forx € [0,1], F'is
Denotexy = [z, ...,xy]", and rewrite the CML (2) in a .
vector form as arL-dimensional map bounded for any bounded. Hence, there exists a number
' 1> 7> p>0, such that for anyk € Q, = {x € R"|x €
Xp+1 = F(Xg). (3) [0,01]}, one hasv(x) € 2, = {x € R"|x € [0,71]}.
Furthermore, define a scalar function,

The controlled CML is given by

Xis1 = GXs 1) = F(%i) + i, (mod 1), (4) o) {1,' oxE o
_ min (;), x €, —Q,,
where . is the control parameter. Tize A
Two lemmas from linear algebra [12] are first introducedand let¢(x) = w(x)x, ¢(x) = v(¢(x)). It can be easily
Lemma 1:(Gerschgorin circle theorem) IKX~'AX = verified thatp(x) € Q,, ¢(x) € Q,, Vx € Q.. Note
D + F, where X is a unitary matrix,D = diag(di,...,d,) also thaty(x) is continuous onf),. It follows from the
and F' = [fi;]nxn has zero diagonal entries, theyd) C  Brouwer fixed point theorem in functional analysis [15] that

there existx; € ., such thatk; = ¢(x;), or equivalently,
x1 = v(¢(x1)) = max{0, ¢(x1) — G(¢(x1))}.  (8)

Supposex; ¢ ,. Then, there exists an indeéxsatisfying
R 1 <i < L, such thaty < 2% = ||x1]jec < 7, ¢i(x1) =
In this paper, all vector inequalities are componentw(x;)zi = p. Sinced(x;) € Q,, for a ¢ € Q,, one has
wise inequalities. The maximum row-sum norm fon x  |F;(¢(x1))| < [|F(6(x1)]lce < [[F(E)]locllo(x1)]] < ao;
n) real matricesA = [a;;] is defined as|All.c = thatis,—ap < Fi(¢(x1)) < ap. Therefore,G;(¢(x1)) =
N e Fi(p(x1)) + po—1> (p — a)o — 1 = 0. Consequently,
max{,; @il 25 =1, em x§(>( m;ic{o,u@(xl) - C%/j(aﬁ(xl)))}, which contradg:ts (8>)/.
Theorem 2:The controlled CML (4) is chaotic Hence, one hag; ¢ Q,, so thatw(x;) = 1. Consequently,
in the sense of Li-Yorke, provided thaty > $(x1) = x; and Eq. (8) becomes
max{Qa,a—F\/l—Fé,%(1+3a+\/a2+6a(1+5)+1)}, _
wherea = a+¢, andd, ¢ are two small positive real values. x1 = max{0,x1 = G(xa)} ©)
Proof: Let x* = [0,...,0]7 = 0. Thenx* is a fixed point SupposeG(¢(x1)) < 0. Then,x; < x; — G(¢(x1)), which
of the CML (4), satisfyingx* = G(x*). contradicts (9). Therefore,
Define the jth eigenvalues ofDG(x) as A\, (j = _ ~
1,2,...,L). Since thegdifferentiation an(d )the méd—gperation G(x1) 20, (x1)"Glx1) =0. (10)
are interchangable, one hd3G(x) = DF(x) + ul. By Since||x1]/ec < 0, 0ON€ has|F(x1)lae < a[X1]los < a0
Lemma 1, one has that is, —ap < F(x1) < ao. Suppose that there exists an
A — 1l < IDF(X)||loe; Vj=1,.., L. ) igdexj, satisfying 1 gjj < L, such thatz! < p. Then
i(x1) = Fi(x1) + pry —1 < ap+ pp — 1 = 0, which
Due to (6), wherex = [z, 22, ..., 2"]", f'(z) = a(1 —2z), contradicts inequality (10). Therefore; > p1 andG(x;) =
one has|DF(x)|l« = max{|a(l —¢€)(1 — 227)| + |ae(1 — 0. Hence, there exists; satisfyingpl < x; < 1 such that

n
U?:l D;, whereD;, =<¢z€C: |Z — dl| < Z |f”| .
j=1
Lemma 2:For a matrix Ayxy With eigenvalues
N

AL, ..., AN, the determinant ofd is equal to[] A;.

20771)| 2 j = 1,2,.., L} <,V x € [0,1], wherel = G(x)) = F(x1) + pix1 — 1= 0; that is

[1,...,1]7, so that (5) is implied by\;| > p —a, (V) =

1,...,L). Under the theorem conditiony > a + /1+ 90, G(x1) =0 a1
one has Under the theorem condition, >

|Ajl>1,vi=1,.., L. @) %(3a+1+\/a2+6a(1+5)+1), for p > r, one

Therefore, all  eigenvalues of DG(x*) are hasx; ¢ B.(x*).

bigger than 1 in  absolute value. Since DefineG(x) = F(x)+ ux—x1, similar to the above pro-
DG(x) = DF(x) + pl, one has|DG(x)||lc = cess,itcan be proved that there exisissatisfyingxy < o1,



(I—e)f'(z") 0 0 ef () ]
ef'(z") (1—e)f'(=?) 0 0
0 ef! (22 1—€)f' (a3 0
DF(x) = .( ) ( .) ) . : , (6)
0 /(@b (- of () 0
i 0 0 - ef' (71 (1—e)f'(=*) |
whereo = (’:lrjy‘“, (X1)min = min{(z1);:j=1,...,L} Finally, consider the globally coupled logistic-map lattice
such that R R described by
G(x0) >0, (x0)"G(x0) =0. (12) L
_ _ € ;
Since ||xollc < o and > 2a, one has||F(xo)|e < Tl = (L —f @)+ Y /@), Q4

afxollee < ao < (x1)min. Suppose that there exists an =17
index j, 1 < j < L, such thatry = 0. ThenG;(x9) = wheref(z) = z(1 —z), L = 32 ande = 0.6. Its Lyapunov
Fj(x0) — 21 < 0, which contradicts inequality (12). There- exponents are plotted in Figs. 3(a). It is shown that all
fore, xo > 0 and G(xy) = 0; that is, Lyapunov exponents are negative, thus the CML is non-
G(xo) = x chaotic. Under the control of this CML witlh = 4 by
0 1 letting § = 0.1 and¢ = 0.1, the Lyapunov exponents become
positive, which is plotted in Figs. 3(b). Thus the controlled
(11) and (13$L,E;%(XO) — 0 with m = 2. CML is chaaotic. It is noted that Theorem 2 is also applicable
Define the eigenvalues aDG(x;) as Ay; = |Ayle®s, O t'he C.MLS where the sum qf all coqpling strengths of all
where |\;;| and 6,; are the module and the phase ofiattices is equal to 1, which is consistent with the above
Aij, j = 1,2,.., L, respectively. By Lemma 2, one hasRemark 1.
det[DG(x1)] = [T, My . A”') (i1 05)i

j=1
According to Eq. (7)JA;] > 1 (j = 1,2,...,L), one has

(13)

Sincexy < Gming g xg € B.(x*). According to Egs.

V. CONCLUSIONS

A spatiotemporal coupled logistic-map lattice is controlled
det[DF(x1)] # 0. Similarly, det[DF(Xo)] # 0. Therefore, py a chaotification algorithm, which is based on state
x* = 0is a snap-back repeller af(x). It follows from  feedback control with a mod-operation. Some conditions
Theorem 1 that the controlled CML (4) is chaotic in thefor choosing the control parameter have been derived. The
sense of Li-Yorke. controlled system with certain parameters satisfying these
conditions is proved rigorously to be chaotic in the sense of
Li-Yorke. The results are also applicable to other types of
oupled logistic-map lattices with different coupling topolo-
ies. Simulation results illustrate and verify the theoretical
nalysis.

IV. SIMULATIONS

To verify the above theoretical remarks, some typic
CMLs are used to simulate the chaotification effect in thi

section. In the simulation, the initial conditions are chosen
randomly and the Lyapunov exponents are computed by
deleting the firstl0® state values and using the successivey
10* state values.

Firstly, the CML (2) withe = 0.6, L = 32 anda = 1 is 2
investigated. Its Lyapunov exponents are shown in Fig. 1(a)
in descending order. It is seen that all Lyapunov exponent§!
are negative. By using the chaotification method described in
Sec. lll withy =4 andé = 0.1 and¢ = 0.1 determined by  [4]
Theorem 2, the Lyapunov exponents of the controlled CML
are plotted in Fig. 1(b). It can be seen that all Lyapunov[5]
exponents are positive, thus the controlled CML is chaotic.

Secondly, considering the CML (2) with= 0.95, L = 32 6]
anda = 3.8. Its Lyapunov exponents are plotted in Figs. 2(a).

It can be seen that all Lyapunov exponents are positive, thug]
the CML is chaotic. Controlling this CML with, = 10 by
letting 6 = 0.1 and ¢ = 0.1, the Lyapunov exponents are
plotted in Figs. 2(b). It is clear that all Lyapunov exponents[s]
are increased, thus the controlled CML has stronger chaos.
Therefore, the chaotifiction method can also enhance th@]
chaoticity of an originally chaotic CML.
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Fig. 1. chaotification of an originally non-chaotic one-way coupled logistic-map lattice
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Fig. 2. Chaotification of an originally chaotic one-way coupled logistic-map lattice

1394

1392

< -05 < 1388

13861

1384

-1 1382

Fig. 3. Chaotification of a globally coupled logistic-map lattice
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