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Abstract— Chaotification of a spatiotemporal coupled
logistic-map lattice via a state feedback control with a mod-
operation is investigated. A mathematically rigorous proof
shows that the controlled system satisfying certain parameter
conditions is chaotic in the sense of Li-Yorke and Devanay,
respectively. Moreover, the chaotification method is applicable
to other coupled logisic-map lattices even with different cou-
pling modes. Simulation results have illustrated the effects and
verified the correctness of the theoretical analysis.

I. I NTRODUCTION

The coupled map lattice (CML) as a spatiotemporal
chaotic system was proposed in 1983 [1]. Since it is a
simple model with most essential features of spatiotemporal
chaos, the CML has been extensively studied in the fields of
bifurcation and chaos, pattern formation, physical biology
and engineering. Recently, the CML has been applied in
cryptography [2], [3], [4], [5], where spatiotemporal chaos
in the CML is very desirable and plays a key role. There
is a method proposed, by shifting the binary representation
of the CML output the first several bits, to chaotify the
CML [6], where the investigation of chaotification of the
CML is numerical. Nevertheless, a mathematically rigorous
and effective chaotification method for CML is desirable,
which can make an originally non-chaotic dynamical system
chaotic, or can enhance the existing chaos of a chaotic
system. Some mathematically rigorous chaotification meth-
ods have been developed (see, e.g. [7] and some references
therein) since the first mathematical chaotification method
proposed by Chen and Lai [8].

Similar to the Chen-Lai method [8], a chaotification al-
gorithm is proposed in this paper to chaotify a CML. In
the controlled CML, a state feedback in each dimension
is applied to guarantee the system trajectory expanding in
all directions, and then a mod-operation is used to “fold”
the trajectories back into a compact region whenever the
expansion takes them to move out of it. Moreover, sufficient
conditions for the feedback gain parameter are derived,
under which the controlled CML is proved to have a snap-
back repeller. According to the Marotto theorem [9], it is,
thus, chaotic in the sense of Li-Yorke. Moreover, the above
chaotification method with certain feedback parameter values
is suitable for chaotifying other coupled logistic-map lattices
with different coupling topologies. Finally, the chaotification
method is applied to control some typical CMLs by choosing
suitable control parameters. Simulation results show that the
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chaotification method makes an originally non-chaotic CML
chaotic and enhances the chaos of an originally chaotic CML,
and that the method is applicable to CMLs with different
coupling structures.

This paper is organized as follows. In Sec. 2, the concept
of Li-Yorke chaos and the Marotto theorem are introduced. In
Sec. 3, the chaotification algorithm of the CML is described,
and some conditions for choosing the control parameter
are obtained; moreover, the controlled CML with certain
parameter values is proved to be chaotic in the sense of Li-
Yorke. Simulations on controlling some typical CMLs by
using the proposed chaotification method are demonstrated
in Sec. 4. The last section gives some concluding remarks.

II. L I-YORKE CHAOS ANDMAROTTO THEOREM

The first precise definition of discrete chaos proposed by
Li and Yorke states that any one-dimensional discrete interval
map having a period-three orbit exhibits chaos [10]. This
is a simple criterion for chaos in one-dimensional discrete
systems and was lately generalized ton-dimensional discrete
systems by Marotto [9]. A correct proof of the Marotto
theorem is given in [11].

Theorem 1:(Modified Marotto Theorem) Consider then-
dimensional discrete system

xk+1 = F (xk), xk ∈ Rn, k = 0, 1, 2, ..., , (1)

whereF is a map fromRn to itself. Assume thatF has a
fixed pointx∗ satisfyingx∗ = F (x∗).

Moreover, assume that

(i) F (x) is continuously differentiable in a neighbor-
hood of x∗, and all eigenvalues ofDF (x∗) have
absolute values large than 1, whereDF (x∗) is the
Jacobian ofF evaluated atx∗, which implies that
there existr > 0 and a norm|| · || in Rn such that
F is expanding inB̄r(x∗), the closed ball of radius
r centered atx∗ in (Rn, || · ||);

(ii) x∗ is a snap-back repeller ofF with Fm(x0) =
x∗, x0 6= x∗, for somex0 ∈ Br(x∗) and some
positive integerm, whereBr(x∗) denotes an open
ball of radius r centered atx∗ in (Rn, ‖ · ‖).
Furthermore,F is continuously differentiable in
some neighborhoods ofx0,x1, ...,xm−1, respec-
tively, anddet[DF (xj)] 6= 0, wherexj = F (xj−1)
for j = 1, 2, ...,m.

Then, system (1) is chaotic in the sense of Li-Yorke.



III. C HAOTIFICATION ALGORITHM DESIGNED FORCML

A one-way coupled logistic-map lattice, one of the most
intensively investigated CML, is described by

xj
k+1 = (1− ε)f(xj

k) + εf(xj−1
k ), (2)

wheref(x) = ax(1−x), xj
k represents the state variable for

thejth site (j = 1, 2, ..., L; L is the number of the sites in the
CML) at time k (k = 0, 1, 2, ...), ε ∈ (0, 1) is the coupling
strength, anda ∈ (0, 4] is the parameter of the logistic map.
The periodic boundary condition,x0

k = xL
k for all k, is used

in the CML.
Denotexk = [x1

k, ..., xL
k ]T , and rewrite the CML (2) in a

vector form as anL-dimensional map,

xk+1 = F (xk). (3)

The controlled CML is given by

xk+1 = G(xk, µ) = F (xk) + µxk (mod 1), (4)

whereµ is the control parameter.
Two lemmas from linear algebra [12] are first introduced.
Lemma 1: (Gerschgorin circle theorem) IfX−1AX =

D + F , whereX is a unitary matrix,D = diag(d1, ..., dn)
and F = [fij ]n×n has zero diagonal entries, thenλ(A) ⊆
⋃n

i=1 Di, whereDi =

{
z ∈ C : |z − di| ≤

n∑
j=1

|fij |
}

.

Lemma 2:For a matrix AN×N with eigenvalues

λ1, ..., λN , the determinant ofA is equal to
N∏

i=1

λi.

In this paper, all vector inequalities are component-
wise inequalities. The maximum row-sum norm for(m ×
n) real matricesA = [aij ] is defined as‖A‖∞ =

max
{

m∑
i=1

|aij | : j = 1, ..., n

}
.

Theorem 2:The controlled CML (4) is chaotic
in the sense of Li-Yorke, provided thatµ >

max
{

2α, α +
√

1 + δ, 1
2

(
1 + 3α +

√
α2 + 6α(1 + δ) + 1

)}
,

whereα = a+ξ, andδ, ξ are two small positive real values.
Proof: Let x∗ = [0, ..., 0]T = 0. Thenx∗ is a fixed point

of the CML (4), satisfyingx∗ = G(x∗).
Define the jth eigenvalues ofDG(x) as λj (j =

1, 2, ..., L). Since the differentiation and the mod-operation
are interchangable, one hasDG(x) = DF (x) + µI. By
Lemma 1, one has

|λj − µ| < ‖DF (x)‖∞, ∀j = 1, ..., L. (5)

Due to (6), wherex = [x1, x2, ..., xL]T , f ′(x) = a(1− 2x),
one has‖DF (x)‖∞ = max{|a(1 − ε)(1 − 2xj)| + |aε(1 −
2xj−1)| : j = 1, 2, ..., L} ≤ a, ∀ x ∈ [0, 1], where 1 =
[1, ..., 1]T , so that (5) is implied by|λj | > µ − a, (∀j =
1, ..., L). Under the theorem condition,µ > α +

√
1 + δ,

one has
|λj | > 1,∀j = 1, ..., L. (7)

Therefore, all eigenvalues of DG(x∗) are
bigger than 1 in absolute value. Since
DG(x) = DF (x) + µI, one has ‖DG(x)‖∞ =

max
{|a(1− ε)(1− 2xj) + µ|+ |aε(1− 2xj−1)| : j = 1, ..., L

}
,

∀x ∈ [0, 1].
By taking r = 1+δ

(µ−α)2 , one has

min
{‖DG(x)‖∞ : x ∈ B̄r(x∗)

}
= a

(
1− 2(1+δ)

(µ−α)2

)
+ µ.

Under the theorem condition,µ > α +
√

1 + δ, one has
‖DG(x)‖∞ ≥ a

(
1− 2(1+δ)

(µ−α)2

)
+ µ > 1, hence,G(x) is

expanding for allx ∈ B̄r(x∗).
Next, similar to the proof of Theorem 3 in [13], [14],

define Ḡ(x) = F̄ (x) + µx − 1, and υ(x) = max{0,x −
Ḡ(x)} ≡ [max{0, x1 − Ḡ(x1)}, ..., max{0, xn − Ḡ(xn)}]T .
SinceF (0) = 0 andF is differentiable forx ∈ [0, 1], F is
bounded for any boundedx. Hence, there exists a number
1 ≥ τ ≥ % > 0, such that for anyx ∈ Ω% ≡ {x ∈ Rn|x ∈
[0, %1]}, one hasυ(x) ∈ Ωτ ≡ {x ∈ Rn|x ∈ [0, τ1]}.
Furthermore, define a scalar function,

ω(x) =





1, x ∈ Ω%,

min
xi>%

(
%
xi

)
, x ∈ Ωτ − Ω%,

and letφ(x) = ω(x)x, ϕ(x) ≡ υ(φ(x)). It can be easily
verified thatφ(x) ∈ Ω%, ϕ(x) ∈ Ωτ , ∀x ∈ Ωτ . Note
also thatϕ(x) is continuous onΩτ . It follows from the
Brouwer fixed point theorem in functional analysis [15] that
there existsx1 ∈ Ωτ , such thatx1 = ϕ(x1), or equivalently,

x1 = υ(φ(x1)) = max{0, φ(x1)− Ḡ(φ(x1))}. (8)

Supposex1 /∈ Ω%. Then, there exists an indexi satisfying
1 ≤ i ≤ L, such that% < xi

1 = ‖x1‖∞ ≤ τ, φi(x1) =
ω(x1)xi

1 = %. Sinceφ(x1) ∈ Ω%, for a ξ ∈ Ω%, one has
|Fi(φ(x1))| ≤ ‖F (φ(x1))‖∞ ≤ ‖F ′(ξ)‖∞‖φ(x1)‖ < α%;
that is,−α% < Fi(φ(x1)) < α%. Therefore,Ḡi(φ(x1)) =
Fi(φ(x1)) + µ% − 1 > (µ − α)% − 1 = 0. Consequently,
xi

1 > max{0, φi(x1) − Ḡi(φ(x1))}, which contradicts (8).
Hence, one hasx1 ∈ Ω%, so thatω(x1) = 1. Consequently,
φ(x1) = x1 and Eq. (8) becomes

x1 = max{0,x1 − Ḡ(x1)}. (9)

SupposeḠ(φ(x1)) < 0. Then,x1 < x1 − Ḡ(φ(x1)), which
contradicts (9). Therefore,

Ḡ(x1) ≥ 0, (x1)T Ḡ(x1) = 0. (10)

Since‖x1‖∞ ≤ %, one has‖F (x1)‖∞ ≤ α‖x1‖∞ < α%;
that is,−α% < F (x1) < α%. Suppose that there exists an
index j, satisfying 1 ≤ j ≤ L, such thatxj

1 ≤ ρ. Then
Ḡi(x1) = Fi(x1) + µxj

1 − 1 < α% + µρ − 1 = 0, which
contradicts inequality (10). Therefore,x1 > ρ1 andḠ(x1) =
0. Hence, there existsx1 satisfyingρ1 < x1 ≤ %1 such that
Ḡ(x1) = F (x1) + µx1 − 1 = 0; that is

G(x1) = 0. (11)

Under the theorem condition, µ >
1
2

(
3α + 1 +

√
α2 + 6α(1 + δ) + 1

)
, for ρ > r, one

hasx1 /∈ Br(x∗).
DefineĜ(x) = F (x)+µx−x1, similar to the above pro-

cess, it can be proved that there existsx0 satisfyingx0 ≤ σ1,



DF (x) =




(1− ε)f ′(x1) 0 · · · 0 εf ′(xL)
εf ′(x1) (1− ε)f ′(x2) 0 · · · 0

0 εf ′(x2) (1− ε)f ′(x3) · · · 0
...

.. .
.. .

. . .
...

0 · · · εf ′(xL−2) (1− ε)f ′(xL−1) 0
0 0 · · · εf ′(xL−1) (1− ε)f ′(xL)




, (6)

where σ = (x1)min
µ−α , (x1)min = min {(x1)j : j = 1, ..., L}

such that
Ĝ(x0) ≥ 0, (x0)T Ĝ(x0) = 0. (12)

Since ‖x0‖∞ ≤ σ and µ > 2α, one has‖F (x0)‖∞ ≤
α‖x0‖∞ < ασ < (x1)min. Suppose that there exists an
index j, 1 ≤ j ≤ L, such thatxj

0 = 0. Then Ĝj(x0) =
Fj(x0) − xj

1 < 0, which contradicts inequality (12). There-
fore, x0 > 0 and Ĝ(x0) = 0; that is,

G(x0) = x1. (13)

Sincex0 ≤ (x1)min
µ−α 1 < r1, x0 ∈ Br(x∗). According to Eqs.

(11) and (13),Gm(x0) = 0 with m = 2.
Define the eigenvalues ofDG(x1) as λ1j = |λ1j |eiθ1j ,

where |λ1j | and θ1j are the module and the phase of
λ1j , j = 1, 2, ..., L, respectively. By Lemma 2, one has

det[DG(x1)] =
∏L

j=1 λ1j =
(∏L

j=1 |λ1j |
)

e(
∑L

j=1 θj)i.

According to Eq. (7),|λ1j | > 1 (j = 1, 2, ..., L), one has
det[DF (x1)] 6= 0. Similarly, det[DF (x0)] 6= 0. Therefore,
x∗ = 0 is a snap-back repeller ofG(x). It follows from
Theorem 1 that the controlled CML (4) is chaotic in the
sense of Li-Yorke.

IV. SIMULATIONS

To verify the above theoretical remarks, some typical
CMLs are used to simulate the chaotification effect in this
section. In the simulation, the initial conditions are chosen
randomly and the Lyapunov exponents are computed by
deleting the first103 state values and using the successive
104 state values.

Firstly, the CML (2) with ε = 0.6, L = 32 anda = 1 is
investigated. Its Lyapunov exponents are shown in Fig. 1(a)
in descending order. It is seen that all Lyapunov exponents
are negative. By using the chaotification method described in
Sec. III with µ = 4 andδ = 0.1 andξ = 0.1 determined by
Theorem 2, the Lyapunov exponents of the controlled CML
are plotted in Fig. 1(b). It can be seen that all Lyapunov
exponents are positive, thus the controlled CML is chaotic.

Secondly, considering the CML (2) withε = 0.95, L = 32
anda = 3.8. Its Lyapunov exponents are plotted in Figs. 2(a).
It can be seen that all Lyapunov exponents are positive, thus
the CML is chaotic. Controlling this CML withµ = 10 by
letting δ = 0.1 and ξ = 0.1, the Lyapunov exponents are
plotted in Figs. 2(b). It is clear that all Lyapunov exponents
are increased, thus the controlled CML has stronger chaos.
Therefore, the chaotifiction method can also enhance the
chaoticity of an originally chaotic CML.

Finally, consider the globally coupled logistic-map lattice
described by

xj
k+1 = (1− ε)f(xj

k) +
L∑

i=1,i6=j

ε

L− 1
f(xi

k), (14)

wheref(x) = x(1− x), L = 32 and ε = 0.6. Its Lyapunov
exponents are plotted in Figs. 3(a). It is shown that all
Lyapunov exponents are negative, thus the CML is non-
chaotic. Under the control of this CML withµ = 4 by
letting δ = 0.1 andξ = 0.1, the Lyapunov exponents become
positive, which is plotted in Figs. 3(b). Thus the controlled
CML is chaotic. It is noted that Theorem 2 is also applicable
to the CMLs where the sum of all coupling strengths of all
lattices is equal to 1, which is consistent with the above
Remark 1.

V. CONCLUSIONS

A spatiotemporal coupled logistic-map lattice is controlled
by a chaotification algorithm, which is based on state
feedback control with a mod-operation. Some conditions
for choosing the control parameter have been derived. The
controlled system with certain parameters satisfying these
conditions is proved rigorously to be chaotic in the sense of
Li-Yorke. The results are also applicable to other types of
coupled logistic-map lattices with different coupling topolo-
gies. Simulation results illustrate and verify the theoretical
analysis.
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