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Abstract
The procedure of the Routh reduction is well-known

for systems of Lagrangian equations in the case, when
one or few generalized coordinates are cyclic. How-
ever, if this system admits a symmetry group given
by a vector field on the configuration space, but the
cyclic coordinates are not given explicitly, the reduc-
tion seems difficult. Here we describe the reduction in
this case.
The result is applied to the problem of motion of a

system of interacting material points moving about an
attracting center. In particular, the expression for the
amended potencial is obtained by the proposed proce-
dure without introduction of any special coordinates.
The obtained potential is used to analise the stationary

motions of a tetrahedral satellite in a central Newtonian
gravitational field. The tetrahedral structure is assumed
to be regular; it is composed by rigid and tether ele-
ments. The possibility to use flexible tethers to provide
a stationary tetrahedral configuration is discussed. The
structure possesses spherically symmetric tensor of in-
ertia, so we use the Routh method with the amended
potential. The reactions in the links are studied us-
ing Lagrangian multipliers. The goal is to identify the
stretched links so they could be replaced by massless
inextensible tethers.
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1 Introduction
The recent programs of space exploration by large-

scaled spatial structures presume, in particular, the
launch of tetrahedral satellite formations [Guzman,
Schiff, 2002], [Clemente and Atkins, 2005]. Clus-
ter formation was successfully launched and used for
Earth magnetosphere studies [Laakso et al., 2005].
In NASA program, a regular tetrahedron constellation

with the characteristic dimension about ten kilometers
is planned to be kept by active control tools [Bainum
and Tan, 2006], [Capo-Lugo and Bainum, 2006]. How-
ever, formation maintenance by active control seems
extremely expensive, so the question is whether it is
possible to replace some active control elements by
passive tools.
One way to maintain the formation chape passively

is to connect the satellites in the formation by rigid
or tethered links. Several research show the possi-
bility to achieve a large variety of plane and three-
dimensional configurations using tethered structures or
an open chain of satellites connected by rigid rods
[Misra and Modi, 1992], [Sarychev, 1999], [Guerman,
2003], [Guerman, 2006], [Munitsyna, 2007].
However, replacement of the active control tools by

rigid rods increases the system mass and leads to sev-
eral problems, such as deformability of the constructed
object, and difficulties in deployment or orbital assem-
bling of such a structure. To minimize the masses of the
links, one can suggest to replace stretched rigid rods by
tethers which are sufficiently light and can be delivered
into the orbit in a compact form. So it is necessary to
estimate the reactions in the elements of the tetrahedral
structure which moves under the action of the central
Newtonian gravitational force.
The case of particular interest is that of regular tetra-

hedron formation, i.e. the case when all satellites are
identic and all links have equal lengths. Here we con-
sider dynamics of a regular tetrahedron formed by iden-
tic satellites connected by massless rigid rods assuming
that its center of mass moves in a circular Keplerian or-
bit. In this case the use of so called “satellite approxi-
mation” does not suffice for attitude dynamics analysis,
because the known partial separation of the orbital and
attitude motions is verified only if at least two moments
of inertia differ from each other [Beletsky, 1965]. The
inertial properties of the structure in question are de-
scribed by the mass moments of the third order because
all its central moments of inertia are equal to each other,
and the “satellite approximation” is not applicable.



Investigation of the orbital dynamics of rigid bodies
with mass distribution that possesses discrete groups of
symmetry, in particular, a group of a regular tetrahe-
dron, arises to publications [Sulikashvili, 1985], [Su-
likashvili, 1987], [Sulikashvili, 1989a], [Sulikashvili,
1989b], [Burov and Sulikashvili, 1993], where the
steady orbital configurations of such systems are found
and the conditions of their stability are studied. It
permits us to use the results obtained in [Sulikashvili,
1989a] to estimate the reactions developed in the con-
straints.

2 Method of study
Consider a system of the Lagrangian equations

d

dt

∂L

∂q̇i
=

∂L

∂qi
, i = 1, ..., n, q = (q1, ..., qn)

(1)
with the Lagrange function

L = L(q̇, q) (2)

allowing a group of symmetry generated by a vector
field

∂q

∂ψ
= v(q) (3)

Let

q = q(ψ,Q), Q = q(0, Q) (4)

be a general solution of (3). Then by (4)

dq

dt
=

∂q

∂ψ

dψ

dt
+

(
∂q

∂Q
,
dQ

dt

)
≡ ∂q

∂ψ
ψ̇ +

∂q

∂Qi
Q̇i (5)

We assume summation with respect to repeating Latin
indices from 1 to n. Field (3) is a field of symmetry for
the Lagrangian system (1), (2). Hence the function

J1 =
(

∂L

∂q̇
, v

)
= pψ (6)

is the first integral of equations (1), (2). This integral is
linear with respect to the impulses ∂L/∂q̇. Substitute
(4), (5) into (6) and consider the latter expression as an
equation with respect to ψ̇. Let

ψ̇ = ψ̇(Q̇,Q, ψ, pψ) (7)

be its solution. Moreover, we assume that the condi-
tions of unicity of this solution are fulfilled (that is usu-
ally true for mechanical systems).

Consider a function

R =
[
L− ψ̇pψ

]
(5),(7)

(8)

In the general case, this function would depend on Q,
Q̇, ψ, pψ. One can prove the following relations.

∂R/∂ψ = 0 (9)

d

dt

∂R

∂Q̇i

=
∂R

∂Qi
, i = 1, ..., n,

∂R

∂pψ
= −ψ̇ (10)

3 Application to the system of interacting massive
points rotating about an attracting center

Consider a system of massive points I moving in
the central Newtonian gravitational field. Assume that
these points interact to each other according to the law
of action and reaction. In particular, such an interaction
can be realized with holonomic constraints, for exam-
ple, by inextensible massless rods or tethers. We intro-
duce an absolute frame NXαXβXγ with the origin in
the attracting center, Xi = (Xα, Xβ , Xγ)T

i , i ∈ I are
coordinates of the vector OXi pointed from the origin
to the i-th massive point, Vi = (Vα, Vβ , Vγ)T

i denotes
its velocity, ri = (Xi,Xi)1/2. The kinetic energy of
the system and the Newtonian potential are respectively

T =
1
2

∑

i∈I
miV2

i , UN = −fM
∑

i∈I
mir

−1
i .

The reaction of constraint that acts to the i-th point
from the j-th one is Fij . Then the equations of motion
are

d

dt

∂L

∂Vi
=

∂L

∂Xi
+

∑

j∈I
Fij , L = T − U.

Since the external forces are central, the vector of ki-
netic moment is constant in the absolute space, and the
system allows the integral of motion

−→J ψ =
∑

i∈I
miXi ×Vi.

If the absolute frame is chosen so as this constant vector
is colinear to OXβ , then

−→J ψ = (0, pψ, 0).
Let us apply to this system the Routh - Lyapunov re-

duction method described above. Introduce a mobile
frame Oxαxβxγ , such that OXβ = Oxβ , and the an-
gle between the corresponding axes of the absolute and



mobile frames is ψ. Then

Xγ = xγ cos ψ − xα sin ψ,

Xβ = xβ , (11)
Xα = xγ sin ψ + xα cosψ.

The differentiation of the expressions (11) with respect
to time leads to

Vγ = vγ cos ψ − vα sin ψ − ψ̇ (xγ sin ψ + xα cosψ) ,

Vβ = vβ , (12)

Vα = vγ sin ψ + vα cos ψ + ψ̇ (xγ cos ψ − xα sinψ) ,

vi = (vα, vβ , vγ)T
i = (ẋα, ẋβ , ẋγ)T

.

Substitution of the formulae (12) into the expression
for the kinetic energy results in

T (x,v; ψ̇) =
1
2

(
a + 2bψ̇ + cψ̇2

)
(13)

where

a =
∑

i∈I
miv2

i , b =
∑

i∈I
mi (vαxγ − vγxα)i

c =
∑

i∈I
mi

(
x2

α + x2
γ

)
.

Then after some simplification the Routh function can
be written as

R(x,v; pψ) =
1
2

[
a− c−1(pψ − b)2

]− UN (14)

The amended potential can be written as

UA(x; pψ) = −R(x, 0; pψ) = Uc + UN (15)

Its two components Uc and UN correspond to centrifu-
gal and Newtonian forces respectively.

4 Application to the orbiting tetrahedral body
with tethered elements

According to the Routh theory [Routh, 1892] (see
also, for example, [Karapetyan, 1998]) to find station-
ary motions of the considered system one should find
the critical points of the restriction of the amended po-
tential onto the manifold defined by the constraints.
Their analysis permits one to obtain the conditions of
stability for stationary motions. Moreover, the use of
the Lagrangian multipliers allows to determine if the
constraint in question is stretched or compressed. If
the constraint turns out to be stretched, it can be imple-
mented using a massless inextensible tether; otherwise

it is necessary to examine other options for their imple-
mentation.
Assume that a regular tetrahedron with the edge `

composed by four massive points A, B, C, and S of
masses m/4 moves in the central Newtonian gravita-
tional field. The center of the tetrahedron is denoted as
O, the constraints are realized by massless rods or, if
possible, tethers.
The central tensor of inertia of the system is spherical,

so according to Steiner’s theorem the moment of inertia
c of the whole system with respect to the axis of rota-
tion Nxβ does not depend on orientation of the body
and depends only on distance R from the tetrahedral
center O to this axis. If J is the principal component
of the central tensor of inertia, then

c = mR2 + J.

It means that the centrifugal term

Uc =
p2

ψ

2 (mR2 + J)

in the expression for the amended potential is not in-
volved in determination of the body’s orientation in sta-
tionary motions: it is involved only in determination of
the “orbital radius” R.
The potential of the Newtonian attraction reads

UN = −.25mG
(
r−1
NA + r−1

NB + r−1
NC + r−1

NS

)
, (16)

where G is the gravitational constant.

4.1 The Routh Function
Suppose the vectors

−−→
NP, P ∈ I = {A,B,C,S}∪O

are given by their components in the rotating frame.
Since O is the system’s center of mass, one can write

A + B + C + S = O. (17)

Six constraints that fix the distances between tetrahe-
dron’s vertices can be written as

fPQ = (P−Q)2 − `2 = 0, P 6= Q, P,Q ∈ I.
(18)

The expression for the Routh function can be written as

Wλ = UA +
1
2

∑
I 6=J∈I

λIJfIJ . (19)

The equations of relative equilibria

∂Wλ

∂xαi

= 0,
∂Wλ

∂xβi

= 0,
∂Wλ

∂xγi

= 0. (20)



are cumbersome, so we don’t represented them here.
These equations should be completed by six equations
of constraints (18). The resulting system is non-linear
and too complex to be solved directly. However, their
solutions, at least their part related to the structure of
the equilibria configurations, are known.
According to [Sulikashvili, 1989a], there exist three

dynamically different classes of relative equilibria:

I. Stable relative equilibria, when one of the tetrahe-
dron vertices points to the Earth;

II. Unstable relative equilibria with the instability de-
gree χ = 1, when the middle points of a couple of
tetrahedron’s skew edges are located at the local
vertical;

III. Unstable relative equilibria with the instability de-
gree χ = 2, when the center of a tetrahedron face
points to the Earth.

For all of them the center O moves in the plane
NXγXα. It was shown in [Sulikashvili, 1989a] that
each of the above classes is given by one-parametric
family of solutions that can be obtained from each other
by rotation about the local vertical. It holds true be-
cause for the system in question all central moments of
inertia are equal. Moreover, it was proved that there is
no more classes of relative equilibria.

4.2 Reactions in the links
To determine the reactions in constraints consider the

above families of solutions. The analytical expressions
for the obtained reactions are also cumbersome. How-
ever, one can assume that the size of the tetrahedron
is considerably smaller than its distance from the at-
tracting center. Using the respective small parameter to
develop the expressions for reactions, one obtains the
following results.
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Figure 1. Equilibrium configuration of Class I.

EQUILIBRIUM OF CLASS I.
Assume that the satellite is pointed to the earth by its

vertex S. The calculation shows that for this relative

equilibrium the main terms of Lagrangian multipliers
read:

λAS = λBS = λCS =
(2
√

6 + 3`)
√

6
16

(21)

λAB = λAC = −1
4

+
√

6`

48
, λBC = −3

4
+
√

6`

48

The edge length ` is small compared to 1, so accord-
ing to (21) λAS , λBS , and λCS are positive. The re-
spective constraints are stretched, and the point S can
be attached to other vertices by massless inextensible
tethers. At the same time, the other three multipliers
are negative, so the respective constraints are stressed.
Their implementation should include either massless
rigid rods or some active control tools.
Since the stability of relative equilibria of Class I, they

are the most important for applications.
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Figure 2. Equilibrium configuration of Class II.

EQUILIBRIUM OF CLASS II.
Consider the relative equilibrium of Class II with the

following coordinates of the tetrahedron vertices For
this equilibrium, the middle points of tetrahedron’s
skew edges AS and BC lie on the local vertical Oζ.
The edge AS lies in the plane of the orbit below the
center of mass O, while the edge BC is located above
the point O, and the points B and C are symmetric to
each other with respect to the orbit plane.
The Lagrangian multipliers in this case are:

λAB = λAC = λCS = λBS =
3
4

(22)

λAS = −3
4
− 3

√
2`

8
, λBC = −5

4
− 3

√
2`

8
(23)

One can see that λAB , λAC , λBS , and λCS are posi-
tive, so the respective constraints are stretched, and the



points A and S can be attached to the segment BC with
massless inextensible tethers. Since ` ¿ 1, (23) imply
that the multipliers λAS and λBC are negative, the re-
spective links are compressed, and the constraints AS
and BC should be implemented using either massless
rigid rods or some active control tools.
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Figure 3. Equilibrium configuration of Class III.

EQUILIBRIUM OF CLASS III.
Consider the following relative equilibrium of Class

III In this configuration, the center of the face ABC
points to the Earth, while the point A lies in the orbit
plane, and the points B and C are symmetric to each
other with respect to the orbit plane.
For this relative equilibrium the Lagrangian multipli-

ers are

λAS = λBS = λCS = − (−2
√

6 + 3`)
√

6
16

(24)

λAB = λAC = −1
4
−
√

6`

48
, λBC = −3

4
−
√

6`

48
(25)

Since ` ¿ 1, relations (24) mean that λAS , λBS ,
and λCS are positive, the respective constraints are
stretched, and the point S can be attached to other
vertices by massless inextensible tethers. Meanwhile,
equalities (25) imply λAB < 0, λAC < 0, and λBC <
0, so the links AB, AC, and BC are stressed. Thus
the respective constraints should be kept either using
massless rigid rods or by some active control tools.

5 Conclusion
We described the Routh reduction for symmetries

given implicitly. The proposed approach was used to
write down the amended potential for the system of in-
teracting massive points moving under the action of the
central Newtonian attraction. For special orbital system
composed with four identical satellites in vertices of the

regular tetrahedron realized by six constraints, express-
ing the constancy and equality of distances between
each pair of satellites the orbital dynamics is consid-
ered. Since the configuration possesses the symmetry
group of regular tetrahedra, the usually used “satellite
approximation” for the Newtonian potential proves in-
sufficient, and we applied the terms up to the third order
(“post-satellite approximation”).
When system’s center of mass describes a circular or-

bit, there exist three group of equilibrium orientations.
For these configurations, we have found the reactions
in the links.
In a stable equilibrium configuration, three links that

are parallel to the local horizontal plane are com-
pressed, and so they should either be rigid or be kept
stretched by an active control effort. The other three
links are stretched, so one can use tethers in these ele-
ments of tetrahedron.
The other two groups of equilibria are unstable.
For the configuration with instability degree one, the

two links orthogonal to the local vertical should be
rigid, while the other four constraints can be imple-
mented using tethers.
For the configuration with instability degree two, three

links that lie in the local horizontal plane are com-
pressed and so should be rigid, while the other three
links can be made by tethers.
This study can be extended to the cases of other regu-

lar polyhedra.
The obtained results can be applied for formation fly-

ing in order to minimize the control efforts necessary
to maintain the formation shape and orientation.
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mathématiques appliquées Ecole Nationale des Ponts
et Chaussées, Avril, No.25, 8 pp.
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