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A Vision-Based Sensor of Position and Rate for
Path Tracking of Autonomous Underwater

Vehicles in Environments with Regular Patterns
Mario A. Jordán, Carlos Berger and Jorge L. Bustamante

Abstract– In this paper a vision-based algorithm for on-

line estimation of position control errors in a guidance sys-

tem for path tracking is presented. The algorithm uses tech-

niques of pattern recognition, however with a high degree

of morphological simplifications. The algorithm detects the

path line stretch which is displayed in the actual frame, and

estimates the slope of the line and its midpoint. Moreover,

it identifies a confidence zone in where the line stretch would

be certainly. Ad-hoc experiments with a subaquatic vehicle

in an test tank show the features of the algorithm proposed

under strong conditions of light perturbation and cloudy

water.

Keywords– Vision-based sensor - Path tracking - Au-
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The interest for subaquatic vehicles applications has
been continuously increasing. Applications embrace not
only the classical ones of the off-shore industry but also
have begun to get widely into oceanographic and scientific
missions [Narimani et. al, 2009].

One of the most relevant technical application concerns
the path tracking of pipelines on the sea bottom with the
goal of inspection [Inzartev, 2009, Wang et. al, 2007]. In
the general case control actions are constructed by the
navigation system from sonar signals and/or vision. Par-
ticularly, subaquatic vision-based systems are generally
cheaper and provide superior rates in the signal process-
ing than sonar systems.

With an onboard camera in the vehicle, the relative im-
age motion can give useful information of tracking path er-
rors in real time. However the visual conditions of the envi-
ronments (often cloudy and muddy water) put restrictions
to the quality of measures and the feasibility of gathering
these [Sattar and G. Dudek, 2006]. Therefore, the design
of vision-based guidance systems with blurred vision come
into consideration in scenarios when the altitude to bottom
is relatively small. This in turn restricts the applications
to a particular class of vehicles that possesses the ability to
react rapidly in order to bypass potential obstacles on the
sea floor.
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From a sensorial viewpoint, vision-based systems pro-
vide frames with features to be extracted at regular in-
tervals of times. So their integration is natural in digital
control systems. The sampling time determined by the im-
age processing rate may negatively influence the stability
of the control system in case this is not sufficiently small.
So, for large cruise velocities the image processing has to
be efficient and timesaving to accomplish stability and per-
formance demands.

In any described scenario above, an intelligent vision sen-
sor to abstract motion properties from moving images on
the sea floor could be significant for autonomous navigation
and in any case could be a complement of other navigation
sensors [Sattar et. al, 2008, Huster et. al, 2002].

Image-based sensors have the ability to provided infor-
mation of position and velocity by image processing with
certain index of confidence. A combination of techniques
like pattern recognition and optical flow is a common way
to build up this kind of sensors [van der Zwaan and Santos-
Victor, 2001, Caimi et. al, 2008].

One of the problems to design robust functions of visual
sensors is commonly the growth of uncertainty in the es-
timations under extreme situations in subaquatic environ-
ments. The usually permanent changes of light intensity
which make the information retrieval from image motion
very difficult (for instance, caustic waves on the sea floor).
Also blurred scenes despite adequate lighting are common
in fluid medium so that the object recognition can not eas-
ily be sustained with continuity like in the aerial medium.
Finally the sporadic lost of frames in the context of control
must at least be detected in order to resort to predictions
upon past states or, in the worst case, to break the vehicle
motion [Garcia-Aracil et. al,2009].

In this paper, the design of a vision-based sensor for
simultaneous spacial and kinematics measurements is fo-
cused. All the difficulties in the image processing emerging
from a blurred subaquatic vision are taken into account for
attaining a robust estimation. So we develop independently
two algorithms for position and velocity and concatenate
them interactively for navigation in the context of path
tracking of lines. Experiments are also set up for this goal
with the evaluation of results in the short-term perspective
of including this sensor in autonomous navigation vehicles.
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The dynamics of the underwater vehicle is [Fossen, 1994]

M
.
v = −C(v)v−D(|v|)v+g(η)+τ t (1)
.
η = J(η)(v+vc), (2)

with η being defined as the generalized position in some
earth-fixed frame, v the generalized velocity vector in a
vehicle-fixed frame, vc is the current flow rate in vector
form. Also there are system matrices, namely: the iner-
tia matrix M , the Coriolis matrix C(v) and drag matrix
D(|v|). Besides, g is the net buoyancy force and τ t the
generalized force of the thrusters.

For autonomous vehicles like there are focusing here, η
is composed by significant and less important modes. The
first set contains the position variables x, y, z and the yaw
angle ψ. The second set contains the roll θ and pitch φ
angles. These former modes are inherently damped or au-
tomatically regulated independently of the control goal of
path tracking. Also the altitude z is regulated by autopilot
to a fixed value.
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In the effort of tracking a line, actually only the rela-
tive position of the vehicle to the line is significant. This
includes the location of the vehicle over the line and its
tangential orientation to it. Moreover the quantification
of the motion is necessary to push the vehicle at desired
cruise velocities.

In our goal, the visual servoing is accomplished by an
inboard camera that has to provide the relative position
x, y, the course ψ, the cruise velocity v and the rotation
rate ψ̇. All these estimations must be provided by the
image moving (the so-called egomotion).

Frame
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Moving window
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Fig. 1 - Pattern matching procedure when the estimated
line moves crossing completely the frame or partially

sidelong
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Imagine a frame containing a line with regular patterns
like in Fig. 1. The line is first recognized (i.e., detected)
and their parameters: the slant α (estimation of the course

ψ) and the coordinates of the line stretch which is em-
braced in the frame are on-line identified (see Fig. 1). The
coordinates are calculated with respect to the frame center.

These estimations have to be provided to the control
system as geometric path errors and the controller would
attempt after that to guide the vehicle by placing the line
vertically at the center of the image in the next steps of
the guidance.

The features of the line are extracted by an algorithm
that runs whenever a frame arrives the estimator.

To this end, we develop in this work a method that per-
forms a number of systematic operations and transforma-
tions over the image. These are summarized in Fig. 2. The
reader can find a mathematical description in [Jordán et.
al, 2010a].
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Fig. 2 - Algorithm to estimation of geometric path errors

The module contains tasks that are divided in three
groups which are executed one stage at a time.

The first group attempts to simplify the frame morpho-
logically in order to enhanced the contrast between pat-
terns and environment.

Usually, an RGB-format image is received and trans-
formed into a grey scale and then the brightness high-
lighted. Commonly pattern appear as white nonconnected
sets (white speckles). Also the differentiation of exogenous
speckles from the sought-after ones in a binary image must
be done morphologically by filtering process. After two
successive erosions, a dilation operation is carried out in
order to recuperate the size of the original speckles that
are not erased. Small speckles are generally produced by
caustic waves on the floor in shallow water.

The second group is advocated to image feature extrac-
tion.

The resulting binary image is further simplified disallow-
ing unimportant information. Here the contours are next
identified. The best method to this end is based on the
morphology of the speckles. At this stage small contours
(little regions that pass the previous erosions) are elimi-
nated. A further reduction of information is attained by
replacing the contours by their centroids.

So we arrive to the third group that supplies the position
parameters of the line, also the geometric path errors in
position and alignment.
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From all calculated centroids there are only those taken
into account that are in the so-called confidence zone. This
zone is a band delimited by two parallel lines. The outtake
of centroids is performed by an ad-hoc flag. So the slope
of the estimated line (referred to as α) and the midpoint of
the visible segment of the line determine the parameters of
the estimated line. Additionally, with the sake of reducing
the number of wrong estimations and giving the algorithm
certain continuity in the identification of the line, some
statistical modifications are introduced. The modification
takes into account past results from previous cycles em-
ploying standard methods for instance, of the affine data
averaging or of the forgetting factor.

It is important to adapt permanently the confidence
zone, because the conditions of the image are commonly
changeable. One possibility is to adjust the width in the
proportion of the speckle areas, or alternatively, the sim-
ple count of the pixels conforming any contour gives idea of
the order of magnitude of the change of the width. Another
possibility could be to let the border lines of the confidence
zone be not parallel.

When the group tasks are fully executed, the algorithm
wait for the next frame.

V. K
�����
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Now we present our approach to estimate kinematics
properties from egomotion. Generally spoken, the previ-
ous algorithm to estimate relative position of the line is
taken as basis to work up to a new combined procedure.

Once again, we will emphasize the requirements of real-
time calculations so as to estimate measures on line for
a guidance control system. This goal is hardly achieved
when parameters have to be extracted from image process-
ing on-line. In this sense, we will take full advantage of the
previous algorithm. The readers are referred to [Jordán et.
al, 2010a, Jordán et. al, 2010b] for mathematical details of
two different algorithms, respectively.
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Fig. 3 - Algorithm to estimation of translation velocity
and sway rate

Clearly, the recognition of motion properties is related to
techniques of optical flow. Since in general common optical
flow techniques are markedly time-consuming and consid-
ered to be not fit for control systems with rapid response,

we will develop instead a simple but robust correlation-
based method to this end.

The key idea is to define a search zone over the patterned
line and overlapping the confidence zone as close as possible
(see Fig. 1). Inside it, there is a small moving window in
where the pattern matching of a template will take place.
This window slides slightly everywhere in all directions to
pattern matching, but always enclosed in the search zone.

The module for kinematics estimation is illustrated in
Fig. 3. Similarly it contains three groups of tasks.

In the first group the template is located at the confi-
dence zone according to possible displacement regions. The
search zone is defined for the next frame around template
location. Here the estimated position parameters of the
line are required.

The second group performs basically a match based in
correlation of the previous template with contents in the
moving window inside the search zone. This group is the
core of the module.

Let us suppose the search region stays overlapping the
confidence zone and a template with a pattern was selected
in the moving window a sampling time before. This tem-
plate has specific coordinates (xt−1, yt−1). After ∆t sec-
onds a new frame enter the algorithm to be considered at
the present sampling time. So, the search zone slides even-
tually a bit so as to overlap the new position of the con-
fidence zone. Then the moving window inside the search
zone begins the matching process by correlation between
the previous template and the window contents. Perturb-
ing the template coordinates for the moving window in
all directions, a maximum of the correlation is searched
for. This maximum occurs by successful matching, say at
coordinates (xt, yt). From this value on, an actual value
of the velocity is estimated as the incremental quotient

v̂t =
(xt,yt)−(xt−1,yt−1)

∆t .
The third group determines the displacement of the tem-

plate as the slid point that produces the maximum corre-
lation value.

It is worth noticing that the estimation so far suffers
from quantification errors and false perspective apprecia-
tion which are proper from 2D image approaches. In fact,
effects of radial and tangential distortions are not taken
into account. So the evolution of the estimates may be
irregular and a filtering is needed. This is accomplished
in two ways. On one side, a maximum-difference filter is
used to reduce high fluctuations that appears in some cases
concerning images with elevated noise level (change of con-
trast, caustic waves, etc.). On the other side, a strong
perturbation may be induced when the estimated position
of the line results incorrect. In such a cases, the calculated
value v̂t is averaged with the previous value v̂t−1.

Moreover, this filtering is not sufficient enough to smooth
the time evolution of v̂t according to the expected quality
for control purposes. Therefore a second filter with a for-
getting factor allows a much more soft time evolution.

It is to remark that the estimations are displacements
expressed in pixels, so the velocity is measured in units of
pixels/frame. Knowing the frames per second of the camera
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, one can obtain velocity in units of pixels/second.
Finally, a commissioning face will allow us to determine

parameters to tune the algorithm in order to give the vehi-
cle velocity in the physical units meters per second. Among
these parameters are the altitude, the tilt angle of the cam-
era and proper parameters of the image processing. More-
over, it is supposed that an autonomous vehicle possesses
an autopilot to regulate altitude as well as to select a proper
camera tilt angle according to a convenient shortsighted or
large-sight vision of the bottom scene. Due to space lim-
itations in the paper we will not address the calibration
procedures here.

VI. S�����
�
�� �����
��

It is quite important for successful vision-based control
applications that the sensor can give the controller a certain
confidence about the quality of measures.

One of the problems to be tackled in our goal is to share
the search zone in the confidence zone when, for instance,
the line is moving fast in the vision frame. This can occur,
above all, when perturbations affect the control system and
control actions do not avoid that the line slides rudely from
the frame center. Obviously, this problem is quite alien to
the vision-based sensor. However it is aimed by design
to confer the search procedure such robust properties that
makes the sensor reliable. To this goal the search zone is
continuously being attracted by the confidence zone. In
that way, if the line is visible in the frame through the
confidence zone, a pattern matching is possible.

Maximum

Maximum

H(k)H(k)

k k255 2550 0
Density

Density MedianMedian

Fig. 4 - Left: histogram of sea floor. Right: histogram of
pattern

In customary operations, pattern estimations may fail:
a) due to sporadic bad image quality or b) simply when
patterns actually ran over the frame. In order to identify
such conditions, supervision is needed. This should pro-
vide a flag to stop position and rate estimations in the
two abnormal conditions, and also to continue estimating
when such conditions have disappeared (case a) or have
been remedied by control (case b).

To this end, a new module that performs histogram-
based operations is included in the whole algorithm. It
works upon the observed fact that both images of patterns
and of the sea floor alone, have typically distinct statistic
properties when contrasted. For instance, as seen in Fig.
4, the histogram of a pattern is typical bimodal (two local
maximums) and well extended over the range [0, 255] due
the high contrast between black and white zones. On the
other hand, the environment on the bottom has a narrow
range of intensities instead (typical one maximum) with

poor contrast. This last scenario can also appear by blurred
image even when the pattern is in focal plane. Accordingly
these differences will be exploited here for detecting pattern
presence/absence or bad/good measure quality.

The algorithm of supervision is described in Fig. 5,
which is self explained together with Fig. 4.
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Fig. 5 - Supervision module for the sensor

Finally, the full algorithm to vision-based sensor is de-
picted in Fig. 5. For vision servoing, the estimations of
position and rate are feedback to the controller. Here ξ
means the width of the confidence zone.

FULL SENSOR

Position
Estimation

Velocity
Estimation

Measurement
Correction

Supervision

Video 
Acquisition

Pre-processing Pre-processing
η̂

η̂&

η%
η%& }

T

o

C

o

n

t

r

o

l

l

e

r

ξ

Fig. 6 - Full algorithm to vision-based estimation of
position and rate

VII. E����
�����

A. Setups

To test the implementation of the vision-based approach
a series of experiments in a test tank were set up. These
consisted in the employment of a subaquatic vehicle (AUV
prototype, see Fig. 7 and 9) that can navigate by tele-
control, following a visible path on the tank bottom. The
vehicle possesses a wireless camera onboard that transmit
the images during the egomotion (see Fig. 7). For the
path tracking problem a patterned line (see Fig. 8) with
a metallic wire inside to bent it plastically according to
any circuital form (see Fig. 9). In many performed experi-
ments there were perturbations of wind producing currents
from some slanted direction, or of caustic waves on the floor
produced by the sun rays at midday when trespassing an
undulating free surface.

One fact to be highlighted in the work is the altitude
of the vehicle with respect to the bottom which influences
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directly the focal distance. Motived by the different states
of water transparency, we have mounted the vehicle motion
at two different constant altitudes. These in turn have
forced us to set the experiments up in a shortsighted and
longsighted vision-based navigation.

B. Control goal

The path tracking was performed according to the navi-
gation along a circuital path. An ideal control would have
to maintain the line totally vertical crossing the center of
the frame at all times. A good practical control however
attempts to achieve this goal despite perturbations reveal-
ing always path following errors. As we are not evaluating
the control but the performance of a sensor instead, both
large or small path errors are considered favorable in the
evaluation. Indeed the line stretch sometimes went sidelong
through the lateral borders or inclusive had temporally dis-
appeared.

Fig. 7 - Wireless cameras in UV. Link: pan-tilt-zoom
regulable camera. Right: Analog camera with digitalizer

Weather: cloudy and windless Weather: sunny and windy

Fig. 8 - Reference line in water

Fig. 9 - AUV navigation in tank with reference line

C. Position and rate identification

Several experiments were led with the described setups.
We will illustrate one of them in Fig. 10. Here some cycles
are selected to show the results of the modules in normal
and critical situations of both blurred frames and coarse

line displacements due to control. To the left and to the
right of the figure, we can see photograms of the line in a
shortsighted and a longsighted orientation of the camera,
respectively.

The frames are illustrated with augmented reality during
the screening of the results in real-time. Here, the crude
image is superimposed with the estimated line, the confi-
dence zone and the search zone for velocity estimation. The
rate for frame processing was about 10 (fps) which gives
small sampling times for control purposes at relatively large
cruise velocities in subaquatic vehicles. However, when
combining the position and the kinematic jointly, the mea-
surement rate is reduced in half the time which is also good
for the guidance.

We now describe in more details the Fig. 10. The frames
to the left correspond to the navigation with shortsighted
horizon and to the right with longsighted horizon.

For the shortsighted horizon, in a), the position estima-
tion gave a false line position, and consequently the velocity
value was incorrect at this frame. In b), the rapid move-
ment of vehicle produces a lost of the line in the respective
frame, thus also here nor a rate estimation neither the line
location were possible. Once the line is well detected, the
velocity estimation can be realized error free. This occurred
in c) where a successful estimation resulted. In d), the esti-
mation was also correct despite the curvature of the line. A
vertical displacement restriction had occurred in e) when
noted the line moved sidelong to the right border of the
frame. This executed the pattern-matching process on the
borders. In f)-g) two scenarios are shown related to when
the templates turned over to the center of the image and
the search zone had begun to slide horizontally for pattern
matching.

For the longsighted horizon in Fig. 10, right, different
results were obtained. In a) the scenario when the position
estimation did not give the right line location is illustrated,
but the velocity estimation could be realized anyway. In b),
the search zone was attracted by the confidence zone ac-
cording to rate module, which crossed vertically the frame
causing the moving window to search for pattern over the
horizontal middle line. In c), a limit case is shown when the
confidence zone was moving to the right till to touch the
lateral border. Up to here the line began to cut the lateral
right border and from this time on the pattern matching
was consequently be accomplished sidelong. This allowed
continuity in the rate estimation. This last process ended
when the control forced the confidence zone to enter again
in the frame interior, see d)-e). Here the search zone went
down and slid over the middle horizontal again. In f) the
pattern went out of the image because of the poor quality
of the frame, so the estimated values became spurious until
the pattern could be detected in g). The navigation with
camera in the longsighted orientation seems to provide a
wide vision field and so the line may be much better de-
tected than in the case of shortsighted horizon. Also the
control could allow itself to compensate large path errors
due to strong perturbations. However this scenario can
change drastically by blurred waters in where the altitude
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has to be diminished and the camera horizon has to be
tuned to a rather shortsighted vision as occurred in our
first experimental description.

Fig 10 - Selected frames for navigation with shortsighted
and longsighted horizons

The result of the supervision process is indicated in the
frame as a dot in the upper border. The color green indi-
cates the measures were possible, and the color red indi-
cates that the sensor can not provide any reliable measure.

In Figs. 11 and 12 we will illustrate the evolution of
the final conditioned estimated rate vector in their com-
ponents for the shortsighted horizon (Fig. 11) and for the
longsighted horizon (Fig. 12). Moreover, for the sake of
clarity, there were described with labels for the cases a)
up to g) according to Fig. 10. Also there are windows
(in orange color) showing the periods when the pattern
matching was accomplished on the lateral borders. Similar
indication in windows (in blue color) was carried out for
the cases when the line got lost or could not being iden-
tified from reasons of poor quality of the image. Clearly,
these windows could be located manually after seeing the
processing, and they helped us to analyze the flag evolution
given by the supervision algorithm.

It can be seen clearly that the continuity of the rate es-
timation is maintained in the transitions when the search
zone moves horizontally and then slides vertically sidelong
and vice versa. However, when the line could not be lo-
cated, the estimation showed signs of instability, becoming
oscillatory and irregular. This had occurred only in the
longsighted orientation of the camera. In this case, the
flag indicating estimation quality performs adequately al-

most all the time. Wrong matching cases from the main
algorithm can not be discriminate with the proposed su-
pervision.
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Fig. 11 - Estimation of the advance velocity from the
vision-based sensor in a shortsighted-horizon setup
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Fig. 12 - Estimation of the advance velocity from the
vision-based sensor in a longsighted horizon setup

VIII. C��	���
���

This paper was concerned about the design of a vision-
based algorithm for on-line estimation of position and rate.
The main application is to use this sensor to visual servoing
in the guidance of autonomous underwater vehicles for path
tracking of underwater lines.

A first identification algorithm employes techniques of
pattern recognition with different degrees of morphological
operations on the image. The result is the estimation of
the line coordinates, its slant and a confidence zone about
the line. Additionally, a second algorithm operates on the
confidence zone and search for patterns in successive frames
to estimate the rate.

A supervision algorithm finally attempts to ensure the
continuity of the estimations and detect the lost of the line
on the frame. Ad-hoc experiments with a subaquatic vehi-
cle and a pattern-shaped line in a test tank had shown the
feasibility of our approach in real applications under strong
conditions of light perturbations and cloudy water. Here
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vision with shortsighted and longsighted horizons were dif-
ferenced.
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