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Abstract: The paper, describes the problem of stability of oscillations in nonlinear 
feedback systems. The concept of stability is defined in a way that makes the problem 
tractable using the absolute stability approach. The result is formulated in frequency 
domain and has the form of the Zames-Falb multiplier, which makes it amenable to 
geometric interpretation. Numerical examples are given to illustrate the application of the 
new result to cases, where the Circle Criterion is not applicable. The advantage of the 
new criterion is that only the period of the oscillations needs to be known, not the 
complete expression of the oscillatory solution.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

The problem of stability of periodic motion was first 
formulated in the classic book by Lyapunov (1992) 
and has since received considerable attention from 
many researchers, including Lyapunov himself.  

The standard approach to this problem involves the 
investigation of the so-called variation equation. For 
the local stability problem, this approach leads to the 
well-studied linear differential equations with 
periodic coefficients (Yakubovich and Starzhinskii, 
1975). The stability criteria involve computation of 
the Floquet multipliers, and various ad hoc estimation 
techniques. They are applicable to both forced and 
autonomous oscillations. 

Another approach involves the use of the fixed-point 
theory. It is described in some length in the 
monographs by Holtzman (1974) and Burton (2005). 
Topological methods are studied in the book by 
Krasnoselskii (1968). These methods are applicable 
only to forced oscillations.  

The approach proposed in this paper differs from the 
previous work in several ways. First, the nonlinear 

variation equations are studied instead of the 
linearized ones, leading to global, as opposed to local, 
stability results. Secondly, the proposed approach 
uses the known absolute stability criteria and, 
therefore, does not require any information about the 
periodic solution except for its period. Finally, the 
resulting criteria are much easier to check than the 
standard ones involving Floquet multipliers found in 
many standard textbooks on differential equations. 
The results are applicable to both forced and 
autonomous oscillations. 

 

2. FORMULATION OF THE PROBLEM 

Our starting point is the nonlinear feedback system in 
the vector-matrix form: 
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Here f(t) is a periodic vector function with the period 
T. It may be identically equal to zero, but then there is 
a question of the existence of periodic solutions, 
which is outside of the scope of this paper. The 
function represents a nonlinear feedback. Its 
properties will be described later in the paper, when 
we formulate the results. Let  be a periodic 
output with a period T corresponding to the solution 
x(t). Let 

)( yϕ

)(ty φ=

)(ty φ=  be an output of the system 
corresponding to another solution )(tx , not 
necessarily periodic, and let )()()( ttt φφσ −= . In 
order to make use of some of the previously obtained 
absolute stability results, we write the variation 
equation in the integral form: 

∫ −Ω+=
t

dttt
0
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Here  

BCet At=Ω )( , ))0()0(()( xxet At −=α . 

Stability of the output  will be understood in the 
following sense: For the output

)(tφ

)(tφ , corresponding 
to any other solution 

),0()( 2 ∞∈⋅ Lσ   

and there exists a constant λ , independent of the 
function , such that )(⋅α

 )()( ⋅≤⋅ αλσ . 

The bars denote the usual Euclidean L2 norm. 

For the sake of simplicity, we consider the case of a 
SISO system, i.e. both the function , hereafter 
called the nonlinearity, and its argument 

)(σϕ
σ are scalar. 

The results can be easily extended to MIMO systems. 

We now proceed to the formulation of the results. 

 

3. STATEMENT OF THE RESULTS 

The main results of this paper follow almost directly 
from the earlier absolute stability results for systems 
with time periodic nonlinearities. For this reason they 
will be stated without proof.  Throughout the paper, 
we denote the transfer function of linear part of the 
system by W(s) and define it by the usual equation: 

BAsICsW 1][*)( −−= . 

3.1 Analytic Criterion. 

The following result is an immediate consequence of 
the Theorem 3.2.5 from (Altshuller, 2004) and 
restated for sake of completeness in the Appendix. 

THEOREM 1. Suppose that: 
1. The matrix A is Hurwitz; 
2. For all t and all ; 21 σσ ≠
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tt
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3. There exists a sequence with nonnegative 

terms, such that  and
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Let be the output of the system (1-3) having 
a period T. Then for the output 

)(ty φ=

)(ty φ= corresponding to any other solution of the 
system (1-3) 

),0()( 2 ∞∈⋅ Lσ  

and there exists a constant λ , independent of the 
function , such that )(⋅α

)()( ⋅≤⋅ αλσ , 

where )()()( ttt φφσ −= . 

The general nature of this criterion makes difficult to 
use since it is not clear how to find the desired 
sequence . However, the left-hand side of the 
inequality (4) has a very convenient Zames-Falb 
multiplier form, which makes it possible to interpret 
this criterion geometrically as we proceed to do in the 
next subsection. 

nθ

3.2 Geometric Interpretation. 

With a slight abuse of notation, we can rewrite the 
inequality (4) in the form: 

0)(Im)(Im)(Re)](Re1[ >−+− ωωωωµ iZiWiZiW  

Let us define the two functions: 
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Note that since , the function  is 
continuous for all values of 

0)(Re >ωiZ )(ωΨ
ω . 

It is relatively easy to show (Lipatov, 1981) that for 
the type of systems under consideration the graph of 
the function consists of branches with 
asymptotes. The ends of the branches point either to 

)(ωΦ

+∞ (Such branches are called stalactites) or 

                                                 
1 For any function )( ωiX , the expression 0)(Re >>ωiX means 
that there exists a constant 0>δ , such that for any real number 
ω , δω >)(Re iX . 

     



to −∞ (Such branches are called stalagmites). The 
inequality (4) holds if a function  can be found 
such that its graph separates stalactites from the 
stalagmites. 

)(ωΨ

This geometric interpretation has been used 
extensively for systems with stationary nonlinearities. 
For the time-dependent case, the best known result is 
the Circle Criterion, for which . 0)( ≡Ψ ω

For the expression given by the Equation (5) we have: 
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This geometric interpretation of the analytic criterion 
is easier to use if the infinite series are replaced with 
finite sums. In the next section, several numerical 
examples will be given to illustrate the application of 
the criterion. 

 

4. NUMERICAL EXAMPLES 

Consider the system with the transfer function given 
by: 

1)(
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Let us choose the following numerical values: a=0, 
b=0.04, p=0.5 and 20=µ . 

The first step is to plot the graph of the function 
. It is shown in thin lines in Fig.1. For this 

example, it consists of one stalactite and one 
stalagmite. Clearly, the Circle Criterion is not 
satisfied in this case since both branches cross the 
horizontal axis. 

)(ωΦ

Next, we choose 

1.01 =θ , ,  5.02 =θ 2.03 =θ

and plot the curve )(ωΨ  for various values of T 
(shown as a thick line). 

Fig. 1 shows the plot for π26.0=T . We notice that 
the branches of the curve are separated and 
conclude that the oscillations with this period are 
stable. 

)(ωΦ
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Fig. 1. 

 

Fig. 2 shows the plot for π3.0=T and leads to the 
same conclusion, as do the plots for 

ππ 3.026.0 << T  (not shown). 
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Fig. 2. 

Let us now choose a different set of numerical values: 
a=3, b=0.167, p=0.5 and 20=µ . For the function 

 we use , , . )(ωΨ 1.01 =θ 4.02 =θ 3.03 =θ

Plotting the curves (Fig. 3), we find that the 
oscillations with the period π2.0=T are stable. 

Once again, we note that the Circle Criterion is not 
met in this case. 
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Fig. 3. 

Let us now consider an example with three branches: 
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We use the same numerical values as in the previous 
example except that we set 500=µ . For the function 

 we use only one term of the series: . )(ωΨ 8.01 =θ
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Fig. 4. 

Fig. 4 shows the plot for π1.0=T . The plot for 
π5.0=T is shown in Fig.5. 
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Fig. 5. 

We observe that the stalactites are separated from the 
stalagmites and conclude that the oscillations are 
stable. The same conclusion is reached for 

ππ 5.01.0 << T . Therefore, in this example, it turns 
out to be easier to guess the desired function , 
and the result is applicable to a wider range of the 
periods. 

)(ωΨ

5. DISCUSSION 

We have developed an analytic criterion for stability 
of oscillations in nonlinear feedback systems and 
illustrated numerically how this criterion can be 
applied, via geometric interpretation. 

It is important to notice that we only needed to know 
the period of oscillations, not the expressions for the 
periodic solutions of the system under consideration. 
In addition, as in the absolute stability problem, we 
did not require the expressions for the nonlinearity. 
The only information needed was it satisfied the 
sector condition. This makes the result applicable to a 
wide class of systems. 

Future research may proceed in the following two 
directions. First, investigation of the numerical 
examples required a considerable amount of 
“guesswork” to find the desired function . It 
will be advantageous to find a more systematic 
method or algorithm for finding this function. 
Secondly, the range of oscillation periods for which 
each choice is applicable is rather narrow. Therefore, 
it will be worthwhile to determine which function 
gives the best range for a given example. 

)(ωΨ

6. APPENDIX 

Here we restate for the sake of completeness an 
earlier absolute stability criterion for systems with 
time-periodic feedback. The system under 
consideration has a linear block described by the 
Volterra integral equation: 

∫ −Ω+=
t

dttt
0

)()()()( ττξτασ . 

The nonlinear feedback block is given by: 

)),(()( ttt σϕξ = . 

The transfer function (frequency characteristic) in this 
case is defined as the Fourier transform of the kernel: 

∫
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The absolute stability criterion is stated as follows. 
THEOREM 2. Suppose that: 
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terms, such that  and 
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Then for any solution ,  and there 
exists a constant 

)(tσ ),0()( 2 ∞∈⋅ Lσ
λ , independent of the function 

, such that )(⋅α )()( ⋅≤⋅ αλσ . 

Clearly, if the conditions of the Theorem 1 are met, so 
are the conditions of the Theorem 2. Therefore, the 
former is the immediate consequence of the latter. 
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