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Abstract— We study Hodgkin-Huxley type model of oscillator
activity in the neurons of a snail Helix pomatia. The multista-
bility in single neuron model is demonstrated. We investigate
the synaptic excitatory coupling and the chain of 20 coupled
elements. The various synchronous regimes are found. Also
we detect the effects of synchronous burst generation and the
formation of synchronous clusters.

I. INTRODUCTION

The affects of synchronization and multistability in neural
systems is a new and intriguing application of dynamical
theory. This affects are variable for the following reasons.
First, the neuron itself is a multi-dimensial nonlinear sys-
tem that is able to demonstrate different activities such
as multistability, tonic spiking, regular or chaotic bursting,
and complex transient regimes. Second, neural oscillations
are usually the result of interaction of many synaptically
connected neurons.[1] Therefore it is neccesary to consider
the effects of synchronization and multistability on neural
systems.

II. SINGLE NEURON

In this article we consider Hodgkin-Huxley type model of
oscillator activity in the bursting neurons of a snail Helix
pomatia[2].

A. Equations

The dynamics of the neuron describes by system of eight
first-order differential equations. The model includes:

1. The basic equation governing membrane behaviour
is
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Here Cm is membrane capacity, V denotes the
membrane potential (mV). The right part of the
basic equation represents the sum of ionic currents
coused by diffusion calcium, potassium, sodium
ions through the cell membrane.
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2. Slow-wave generating mechanism
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3. Spike generating mechanism (the Hodgkin Hux-
ley sodium TTX-sensitive and potassium TEA-
sensitive currents)
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4. Calcium currents (transient voltage-dependent, ��* � . and stationary k �mlonXprqgs d -inhibited , �$* ��+ * � . )
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by Ca stores.
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Here 0 s is the maximum conductance of channel.� s is the apparent equilibrium(reversal) potential.F}� H � i �AF J � H J �OF * � is the gating variables, determines the
fraction of open channels. k �mlNq is k �ml nOp q's d , F�� . , F is
Faraday number

j @ � L��f? � F��f� +"� ; � is the volume of the
cell, y � is the rate constant of intracellular Ca uptake by
intracellular stores, ~ is the endogenous Ca buffer capacity.
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B. Steady states and bifurcation to oscillatory regime

First, we are interesting in steady states. Their coordinates
can be found from system of equations:
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Using a simple mathematical transformation this system
was reduced to one equation only depends on � :
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 :

Using numerical analysis of � , �/. we can find the zeros of
the function and thus the coordinates of equilibriums. Fig 1
represents the graphs of function � , �/. plotted of different
parameter 0 �� . Increasing 0 �� from 0.014 mS to 0.018
mS leads to the change of the dynamics of neuron from
excitatory mode to periodic bursting mode.

The first curve(marked by label ”1”) in Fig. 1 was plotted
with 0 �� 
 :-< : 5 ? FCB . In this case neuron is in excitatory
mode and dynamical system have 3 equilibriums: points E1,
E2, E3(zeros of function � , �/. ). For analysis of stability of
this equilibrium we have to linearize described above system

Fig. 2. Phase trajectory and stable states. Plane �EDGF � �H�,IJ����
K���� ���������
.
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-coefficients at the linear members of series ex-

pansion of functions in right parts of equations (1)-(8)
in the point of equilibrium. The real part of eigenvalues
of matrix of coefficients

losSR
for points E1, E3 turn out

negative that indicates stability of this states. Calculating
eigenvalues for E2 shows unstable behavior of this state. To
understand the dynamics of the system and the bifurcation
leading to oscillatory regime we plot the projection of phase
trajectory which corresponds to excitation of neuron(Fig. 2).
Equilibriums E1 and E2 situate on the invariant curve. When
the dynamical system is positioned in equilibrium E1 neuron
doesn’t fire, his action potential doesn’t change and equal to
potential of a rest. Changing the initial conditions (by adding
impulse of depolarizing current for example) leads to the
situation when dynamical system leaves the equilibrium and
get on invariant curve which corresponds to burst of spikes of
action potential. Then dynamical system returnes by a curve
to an equilibrium again and proceeds to locate in a rest state.

It is necessary to notice that in the case that presented in
Fig. 2 phase trajectory did not get into domain of attraction
of stable state E3, which have the following coordinates:
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At 0 �� 
 :3< : 5 vNv @ FWB take place the bifurcation of
saddle-node on invariant circle. The fusion of equilibriums
E1 and E2 illustrates curve marked by label ”2” in Fig. 2.
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Fig. 3. Bifurcation diagrams. a)Control parameter - �0F � ����
 ���� ������� ���
. b)Control parameter - � ��
 � � F � ���S�������

Further increasing of 0 �� leads to disappearing of states
E1 and E2 (curve marked by label ”3” in Fig.2.) via a
bifurcation of saddle-node on invariant circle and appearing
of homoclinic orbit corresponding to a periodic bursting
mode.

It is very interesting to note that the steady state E3 does
not disappears and almost doesn’t change own coordinates
and behavior in rational range of parameters. Thus dynamics
in the single neuron depends not only on parameters and also
on initial conditions. Regime when the system locates in the
steady state E3 we call ”regime of oscillatory death”.

Analytical investigation of Komendantov-Kononenko
model has shown that:

� the model change own dynamics from excitatory to
firing mode via a bifurcation of saddle-node on invariant
curve.

� the dynamical system is multistable. Except for attrac-
tors corresponding to different oscillatory regimes there
is a stable state in the phase space corresponding to
regime of oscillatory death, thus behavior of neuron
depends on initial conditions.

C. Regimes of activity

In this section we present results of numerical analysis
of described above neuron model. Change between differ-
ent states of electrical activity and the appearance of a
chaotic discharge can be evoked by long-lasting alteration
of chemosensitive conductances 0�( and 0 �� participating in
slow-wave generation [3]. Thus, it is interesting to investigate
the interspike intervals(ISI) dependence of the model neuron
on both the 0N( and 0 �� conductances as the control param-
eters. Figure 3 showes the bifurcation diagrams obtained for
these parameters.

Bifurcation diagrams show that the model can reproduce
various types of activities:

i) Periodic spiking activity 0 ( 
 :-< 5 FWB_� 0 �� 

:3< :�= L 5 FCB Corresponding time series are showed
in Fig. 4a.

ii) Chaotic spiking activity 0 �� 
 :-< :	=Nv @ FWB_� 0 ( 

:3< 5 v FWB . In this case value of ISI does not remain
to constants during the time of realization(Fig. 4b).
It is necessary to note, that chaos in the dynamical
system results from the cascade of period-doubling
bifurcation.
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Fig. 4. a. Realization of periodic spiking. �0F � ���S�G����� ����
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iii) Periodic bursting activity. 0 ( 
 :3< 5 v FWB_� 0 �� 

:3< :�= ? FWB . In Fig. 5a we can see the periodic
bursts(series of spikes) with two time scales - big
period of time between bursts(dots at the top of the
diagram) and small period of time corresponding to
ISI of the spikes inside of bursts(dots at the bottom
of the diagram).

iv) Chaotic bursting activity 0	( 
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were not changed. Corresponding time series are
represented in Fig. 5b.

v) Regime of oscillatory death. The analytical investi-
gation of this model has shown that the dynamical
system is multistable. Except for attractors corre-
sponding to different oscillatory regimes there is a
steady state in the phase space which corresponds
to nonoscillatiory mode.

Therefore, large dimension of phase space and number
of control parameters lead to a wide set of regimes and
multistability.

III. CHAIN OF NEURONS

In this section we present results of our study of collective
behavior in the chain of 20 elements of synaptic excitatory
coupling. Excitatory coupling is modeled by synaptic current� �� d 
 � ��� d�� , �A. ,�� �� d � � -	� � M . [4]. Here � �� d (further d) is
a maximum conductance of the channel, � �� d 
 : F � is
the reversal potential. The share of the open channels � , �A.
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Fig. 6. Bifurcation diagram. Chain of 20 periodic spiking elements.
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in a synapse was set by the standard kinetic equation:
���
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Here ! # �43-56587-9�: 1 . # �4;-5<769=: 1 %>�"5@? 3 during ;BAC7 after
a spike and %D�E5 otherwise. In this series of experiments�

becomes the one of control parameters. The primary
intent is a investigation of various aspects of interaction
of the coupling neurons such as phase and out of phase
synchronization, transition to a new modes, multistability and
others. A depolarizing current F�GIHKJMLON 5�? 5 1 5�? 5�;QP�R�% (taken
randomly) was added to the basic equation to bring small
distinction between neurons. The time series are presented
in the spatio-temporal diagrams.

A. Periodic spiking

First we consider periodically spiking neurons. In Fig. 6
is represented dependence of ISIs of each neuron on value
of coupling strength. The diagram was created with the
step S � �T5@? 5�5-UVACW . For each value of

�
was calculated

time siries during 300 s, first 50 s were not taking into
account to reject a transient periods. Initial conditions for
each realization did not vary.

There are several areas in Fig. 6 witch corresponds to
different activities of the neurons:

i)
� L &�5�? 5 1 5�? 5-U2XQPKACW - the region of irregular behav-
ior. Time series are showed in Fig. 7a. There we
can see the areas of temporary synchronous bursts.
It is an important case of synchronization which
have a transient character.

ii)
� L &Y5@? 56U2X 1 5�?Z(�;-U-P�A�W - region of synchronous
burst generation. Coupling of neurons leads to
an interesting effect: the chain of elements which
initially were in periodic spiking mode transform

a) b)

Fig. 7. Spatio-temporal diagrams in the chain. a) Irregular activity and
regions of transient burst synchronization.b) Synchronous burst generation.
Parameters: �[�/�\���
	�����Y���]�^�\��� ������	���_�a`Kbdc��e��� ����f@����hg)bdc����� ��i���
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Fig. 8. Dependence frequency of a)Bursts b)Spikes on d. Parameters: �K������
	���_�����]�+�j��� ������	2��

their dynamics to periodic bursting mode as a result
of interaction. Time series is presented in Fig. 7b.
The process of burst synchronization is represented
in fig. 8a. The increasing

�
first guide to synchro-

nization and then to desynchronization of bursts
with the decreasing burst frequency. The spikes
inside of bursts show more complex dynamics.
With increasing of

�
increases the burst duration

and number of spikes in bursts. The adding of
spikes in bursts of different elements takes place
at different values of

�
. Thus the number of spikes

differs and the equalization of spike frequencies
does not occur.

iii)
�lk 5�?Z(6(�mnA�W - the desynchronization of bursts
precedes to the regime when some neurons stop
firing as a result of interaction in a chain. Corre-
sponding time series are presented in Fig. 9. Thus
there becomes apparent an effect of oscillatory
death described in section II. This mode leads to
formation of clusters of chaotic spiking, periodic
bursting and oscillatory death elements. The size of
formed cluster determines the behavior of elements

a) b)

Fig. 9. Cluster formation through the effect of osillatory death.
Parameters: � � �����
	6������ �]� ����� ������	�����h`�bdc8�����
	o���qp�fr�����g)bYc8����
	o����sr��@b



Fig. 10. Dependence type of behavior on coupling strength and size of
cluster. Parameters: � F � ���S� ��� � � ��
 � ��� ������� ���

Fig. 11. Bifurcation diagram of chaotic elements. Parameters: �	F ����S����� ����� ����
P� ��� �������G���

inside of it. Such scaling dependence represents
in Fig. 10. It shows the dependence of threshold
value of � when behavior of cluster changes to clear
synchronous bursts without any chaotic discharges
upon size of cluster(N). It is necessary to notice
that clusters doesn’t interact throw the neurons in
oscillatory death mode.

B. Chaotic neurons

The dependence of behavior in the chain is presented
in Fig. 11. The regime of collective synchronous burst
generation occurs through the formation of clusters of burst-
ing elements. This effect is presented in Fig. 12a and it
is the main difference between chain of periodically and
chaotically spiking elements.

As in a previous case there is an effect of cluster for-
mation through the oscillatory death elements at a value of��� :-< 5N5 v FCB . Corresponding time series is represented in
Fig. 12b There are clusters of oscillatory death, periodically
bursting and as against to previous case chaotically spiking
elements.

a) b)

Fig. 12. Spatio-temporal diagram of a chain. a)Clusters of bursts
precedes the collective burst generation. b)Clusters of oscillatory silent,
periodical bursting and chaotically spiking elements.Parameters: �	F ����S����� ����� ����
P� ��� �������G��� ��� ����� ��� ��� ������� �	� � ���S������� ��� �

IV. CONCLUSIONS

The analytical investigation of Komendantov-Kononenko
model has shown that except for attractors corresponding to
different oscillatory regimes there a stable state in the phase
space that corresponds to mode of oscillatory death. This
is leads to the multistability of single neuron and a as well
in the chain of elements and also to effect of formation of
clusters of oscillating and death elements in the chain.

The effect of collective burst generation by a chain of
initially spiking elements is detected. In the case of periodic
elements the regime of transient burst synchronization pre-
cedes to a regime of collective synchronous burst generation.
In the case of chaotic elements the increasing of coupling
strength first leads to the generation of bursts in some clusters
of elements and then to a the collective synchronous burst
generation.
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