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Abstract— A novel approach is presented for extracting phase
equations from multivariate time series data recorded from a
network of weakly coupled limit cycle oscillators. Our aim is
to estimate all the important properties of the phase equations
such as natural frequencies and interaction function between
the oscillators. Our approach requires the measurement of
an experimental observable of the oscillators; in contrast to
previous methods, it does not require measurements in isolated
single, or two-oscillator setups. This non-invasive technique
should be advantageous in biological systems, where extraction
of few oscillators may be a difficult task. The method is most
efficient when data is taken from the non-synchronized regime
where the phases of the oscillators are affected by coupling
but where no complete phase locking of the oscillators occurs.
Applicability to experimental systems is demonstrated by using
a network of electrochemical oscillators; the experimentally
obtained phase model is used to predict the synchronization
diagram of the system.

I. INTRODUCTION

Synchronization is a ubiquitous phenomenon of coupled
nonlinear oscillators found in many fields of natural science
and engineering. Comprehensive investigations have been
made from both theories and experiments on synchronization
of coupled limit cycle oscillators as well as coupled chaotic
oscillators [1]. One of the most important theoretical devel-
opments is the phase reduction theory of weakly coupled
limit cycle oscillators [2]. This theory provides the standard
methodology for analysis of various systems, ranging from
electrochemical oscillators [3], neurons [4], brain activity [5],
and circadian oscillations [6], [7]. However, the important
problem, how to construct phase models from measurement
data, remains open. It is of special interest to infer phase
equations that characterize the underlying coupled system
simply in terms of natural frequencies of individual os-
cillators and interaction functions between the oscillatory
elements. Up to now, several techniques have been developed
to construct phase equations from nonlinear systems. [2],
[4], [8], [9], [10]. One of them is the perturbation method
[2], [8], [9]. Despite its high reliability, the method has a
severe limitation to measurement data, since it requires the
application of external perturbations to nonlinear oscillator
in an isolated condition. Other methods also have restrictions
such as they are applicable only up to a system of two
coupled oscillators [4], [10]. In order for its wider application
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to experimental (most notably biological) systems, which
often have a network structure composed of many oscillators,
much stronger technique should be established. Non-invasive
approach is desired not to destroy the original configuration
of the biological network.

The aim of this presentation is to demonstrate a novel
approach to the development of experiment-based phase
models of rhythmic, weakly interacting systems [11]. Our
approach has the important practical advantages that (1) it
can be applied to a network of many oscillators, (2) it is a
non-invasive approach, and (3) the technique can be easily
implemented into simple codes and parameter estimation has
an excellent convergence property.

II. PROBLEM AND METHOD

Consider a system of N weakly coupled limit cycle
oscillators:

ẋi = Fi(xi) +
C

N

N∑

j 6=i

G(xi, xj), (1)

where xi and Fi (i = 1, 2, · · ·, N ) represent state variables
and dynamics of the i-th oscillator, C and Gi represent
coupling constant and interaction function. Our assumption
is that in isolated condition (C = 0) each oscillator Fi gives
rise to a stable limit cycle with similar natural frequencies
ωi. Then the phase reduction theory [2] states that for weak
global coupling C the network dynamics is reduced to phase
equations of the following form:

θ̇i = ωi +
C

N

N∑

j=1

H(θj − θi). (2)

As a recording condition, we suppose that simultaneous
measurement of all oscillators is made as {xi(n∆t) : n =
1, · · ·, M}

N

i=1
(∆t: sampling time). Our goal is to infer the

phase equations (2) from the measurement data under the
conditions that (i) underlying dynamics (1) is unknown, (ii)
coupling constant C associated with the measured data is
taken from non-synchronous regime [12], and (iii) coupling
type is known to be global.

Our approach to the problem can be described as follows.

1) Determine phases θi(t) from data xi(t). Among var-
ious definitions of phases [1], a simple formula is
chosen, where phase θ is increased by 2π at every
local maximum of x(t) and between the local maxima
the phase grows proportionally to time.



2) Fit the phases {θi(t)} to the phase equations:

θ̇i = ωi +
C

N

N∑

j=1

H̃(θj − θi), (3)

H̃(∆θ) =

D∑

j=1

ajsinj∆θ + bj(cosj∆θ − 1), (4)

by estimating the unknown parameters p = {ωi, aj , bj}
via multiple-shooting method [13]. Note that the inter-
action function H , which is in general nonlinear and
periodic with respect to 2π, is approximated by the
Fourier expansion up to the order of D. [Assuming a
difference coupling, the interaction function is set to
be zero for zero phase difference, i.e., H̃(0) = 0].
In the multiple-shooting, we denote time evolution
of the phase equations (3),(4) with respect to initial
condition θ(0) by θ(t) = φt(θ(0), p). Then, at each
sampling time t = i∆t, the phase equation must satisfy
the following boundary conditions

θ((n + 1)∆t) = φ∆t(θ(n∆t),p). (5)

With respect to the unknown parameters p, we solve
the above nonlinear equations by the generalized New-
ton method. In practice, the evolution function φt

is integrated numerically. For the computation of the
gradients ∂φ/∂(p) which are needed for the Newton
method, variational equations of the phase equations
(3),(4) are also solved numerically.

3) To avoid the over-fitting problem, cross-validation
technique is utilized to determine the optimum number
of higher harmonics in the interaction function, D [14].
We divide the multivariate data into two parts. For the
first half data, the parameter values p are estimated.
Then we apply the estimated parameters to the latter
half data and measure the error. The order number D
giving rise to the minimum error for the latter data is
considered to be the optimum.

III. APPLICATION TO ELECTROCHEMICAL OSCILLATORS

Let us apply our technique to experimental data from
electrochemical oscillatory system. The experiments were
carried out in a standard electrochemical cell containing 3
mol/dm3 sulfuric acid kept at a temperature of 11 oC with an
8×8 array of 1 mm diameter nickel, a Hg/Hg2SO4/K2SO4

reference, and a Pt counter electrode. (For the experiments
with 32 electrodes only half of the electrodes were connected
in the array.) The currents, proportional to the rate of electro-
dissolution, were measured at a frequency of 100 Hz using
zero resistance ammeters. The electrodes, held at a potential
of V = 1.105V, were connected to a potentiostat through
one series (collective) resistor, Rs, and through N parallel
resistors (N is the number electrodes). The dimensionless
interaction strength K = NRs/Rp was controlled through
the external resistors by keeping the equivalent resistance
Req = Rp + NRs constant[3]. (The physical coupling

strength is obtained as C = K/(ReqCd), Cd = 1.3mS as
measured by impedance spectroscopy.)

First, we consider a network of 32 electrochemical oscil-
lators. Multivariate data {yi(t)}

32

i=1
were measured from all

N = 32 oscillators with a coupling strength of C = 0.018
1/s, which gives rise to non-synchronized dynamics. The
recording interval of 5 sec was utilized for the parameter
estimation. Figures 1 and 2 show the estimation results
based on the optimum D = 1. Natural frequencies are well
estimated with slightly higher values than those obtained
with C = 0. Moreover, the shape of the estimated interaction
function H̃(∆θ) is in a good agreement with that estimated
by applying the perturbation method to a single isolated
electrochemical oscillator [9]. The interaction function con-
sists of strong sin(∆φ) and 1 − cos(∆φ) terms and higher
harmonics are very weak; this functional form is consistent
with theoretical prediction of Stuart-Landau oscillators close
to a Hopf-bifurcation [2].
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Fig. 1. Estimated natural frequencies (vertical axis) {ωi}
32

i=1
of 32

electrochemical oscillators vs. the measured natural frequencies (horizontal
axis).
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Fig. 2. Interaction function H(∆θ) estimated by the present method from
multivariate data of a network of 32 electrochemical oscillators (dotted line)
is compared with that estimated by applying the perturbation to a single
isolated electrochemical oscillator (solid line) [9].



Finally, we demonstrate capability of our approach to
predicting the synchronization structure. For another net-
work of 64 globally coupled electrochemical oscillators a
synchronization diagram (dependence of the order parameter
Φ on the coupling strength in the range of C∈[0, 0.17]) has
been previously obtained [15]. We examine the power of the
extracted experiment-based phase model in recovering this
diagram. The estimated model is simulated to produce the
synchronization diagram. Fig. 3a shows the dependence of
the order parameter Φ on the coupling strength when only
a single data set with K = 0.033 close to the Kuramoto
transition point was used to obtain the phase model. (The
order parameter can be computed according to ReiΦ =
1

N

∑N

j=1
eiφj [2], [3].) In spite of the drift, relative shortness

of the time series, and the larger (64) population size, the
phase model gives an excellent prediction of the order vs.
coupling strength curve.
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Fig. 3. Synchronization diagram of a network of 64 electrochemical
oscillators. The order parameter Φ is plotted against the coupling strength
K. The model prediction (dotted line) is compared with the experimental
curve (solid line with crosses). Location of the measured data at K = 0.039
is marked by a box.

IV. CONCLUSIONS

An approach has been presented for inferring phase equa-
tions from multivariate time series. Analysis of measurement
data from electrochemical oscillators demonstrated practical
applicability to experimental systems. The present approach
is rather general and can be extended to more complex
situations such as the case of nonuniform coupling Ci,j .
Such extended cases will be investigated in forthcoming
studies. One of the future challenges is to apply the present
approach to a network of oscillators in biological systems.
Recent technological advances made simultaneous (optical
or electrical) measurements of the rhythmic cells possible
in networks; examples include circadian gene expressions of
suprachiasmatic nucleus (SCN) [6] or the synchronous elec-
trical activity in neuronal pacemakers [16]. Such recording
condition would facilitate the construction of phase models
from experimental data that could be used for the simple

yet accurate description of a large number of rhythmic,
interacting cells.
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