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Abstract
The concept of nonlinear normal modes (NNMs) is

discussed in the present paper and its companion, Part
II. Because there is virtually no application of the
NNMs to large-scale engineering structures, these pa-
pers are an attempt to highlight one aspect that might
drive their development in the future. Specifically, we
argue that numerical methods for the continuation of
periodic solutions pave the way for an effective and
practical computation of NNMs. In this context, we
show that the NNM computation is possible with lim-
ited implementation effort. The proposed algorithm,
implemented in MATLAB, relies on two main tech-
niques, namely a shooting procedure and a method for
the continuation of NNM motions. The algorithm is
demonstrated using a 2DOF nonlinear system. A com-
parison with the results given by the AUTO software is
achieved in Part II.
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1 Introduction
Nonlinear normal modes (NNMs) offer a solid the-

oretical and mathematical tool for interpreting a wide
class of nonlinear dynamical phenomena, yet they have
a clear and simple conceptual relation to the LNMs
[Vakakis et al., 1996; Vakakis, 1997; Kerschen et al.,
2008]. However, most structural engineers still view
NNMs as a concept that is foreign to them, and they do
not yet consider NNMs as a useful concept for struc-
tural dynamics. One reason supporting this statement
is that most existing constructive techniques for com-
puting NNMs are based on asymptotic approaches and
rely on fairly involved mathematical developments.
There have been very few attempts to compute NNMs

using numerical methods [Slater, 1996; Pesheck, 2000;
Lee et al., 2005; Arquier, 2007]. Algorithms for the

continuation of periodic solutions are really quite so-
phisticated and advanced (see, e.g., [Seydel, 1994;
Doedel, 2007]), and they have been extensively used
for computing the forced response and limit cycles of
nonlinear dynamical systems (see, e.g., [Touzé et al.,
2007]). Interestingly, they have not been fully ex-
ploited for the computation of nonlinear modes.
The objective of this paper and its companion, Part

II, is to support that these numerical algorithms pave
the way for an effective and practical computation of
NNMs. In the present paper, we show that the NNM
computation is possible with limited implementation
effort. The proposed algorithm, implemented in MAT-
LAB, relies on two main techniques, namely a shooting
procedure and a method for the continuation of NNM
motions. The algorithm is demonstrated using a 2DOF
nonlinear system. In Part II, the same study is carried
out using the AUTO software.

2 Nonlinear Normal Modes (NNMs)
A detailed description of NNMs and their fundamen-

tal properties (e.g., frequency-energy dependence, bi-
furcations and stability) is given in [Vakakis et al.,
1996; Vakakis, 1997; Kerschen et al., 2008]. For com-
pleteness, the two main definitions of an NNM are
briefly reviewed in this section.
The free response of discrete conservative mechanical

systems with n degrees of freedom (DOFs) is consid-
ered, assuming that continuous systems (e.g., beams,
shells or plates) have been spatially discretized using
the finite element method. The equations of motion are

Mẍ(t) + Kx(t) + fnl {x(t), ẋ(t)} = 0 (1)

where M is the mass matrix; K is the stiffness matrix;
x, ẋ and ẍ are the displacement, velocity and accelera-
tion vectors, respectively; fnl is the nonlinear restoring
force vector.
There exist two main definitions of an NNM in the

literature due to Rosenberg and Shaw and Pierre:



1. Targeting a straightforward nonlinear extension of
the linear normal mode (LNM) concept, Rosen-
berg defined an NNM motion as a vibration in uni-
son of the system (i.e., a synchronous periodic os-
cillation).

2. To provide an extension of the NNM concept
to damped systems, Shaw and Pierre defined an
NNM as a two-dimensional invariant manifold in
phase space. Such a manifold is invariant under
the flow (i.e., orbits that start out in the manifold
remain in it for all time), which generalizes the in-
variance property of LNMs to nonlinear systems.

At first glance, Rosenberg’s definition may appear
restrictive in two cases. Firstly, it cannot be easily
extended to nonconservative systems. However, the
damped dynamics can often be interpreted based on the
topological structure of the NNMs of the underlying
conservative system [Kerschen et al., 2008]. Secondly,
in the presence of internal resonances, the NNM mo-
tion is no longer synchronous, but it is still periodic.
In the present study, an NNM motion is therefore de-

fined as a (non-necessarily synchronous) periodic mo-
tion of the undamped mechanical system (1). As we
will show, this extended definition is particularly at-
tractive when targeting a numerical computation of the
NNMs. It enables the nonlinear modes to be effectively
computed using algorithms for the continuation of pe-
riodic solutions.

3 Numerical Computation of NNMs
The numerical method proposed here for the NNM

computation relies on two main techniques, namely a
shooting technique and the pseudo-arclength continua-
tion method. A detailed description of the algorithm is
given in [Peeters et al., 2008].

3.1 Shooting Method
The equations of motion of system (1) can be recast

into state space form

ż = g(z) (2)

where z = [x∗ ẋ∗]∗ is the 2n-dimensional state vec-
tor, and star denotes the transpose operation, and

g(z) =
(

ẋ
−M−1 [Kx + fnl(x, ẋ)]

)
(3)

is the vector field. The solution of this dynamical sys-
tem for initial conditions z(0) = z0 = [x∗0 ẋ∗0]

∗ is
written as z(t) = z (t, z0) in order to exhibit the depen-
dence on the initial conditions, z (0, z0) = z0. A solu-
tion zp(t, zp0) is a periodic solution of the autonomous
system (2) if zp(t, zp0) = zp(t + T, zp0), where T is
the minimal period.
The NNM computation is carried out by finding the

periodic solutions of the governing nonlinear equations

of motion (2). In this context, the shooting method
is probably the most popular numerical technique. It
solves numerically the two-point boundary-value prob-
lem defined by the periodicity condition

H(zp0, T ) ≡ zp(T, zp0)− zp0 = 0 (4)

H(z0, T ) = z(T, z0) − z0 is called the shooting func-
tion and represents the difference between the initial
conditions and the system response at time T . Unlike
forced motion, the period T of the free response is not
known a priori.
The shooting method consists in finding, in an iter-

ative way, the initial conditions zp0 and the period T
that realize a periodic motion. To this end, the method
relies on direct numerical time integration and on the
Newton-Raphson algorithm.
Starting from some assumed initial conditions z(0)

p0 ,

the motion z(0)
p (t, z(0)

p0 ) at the assumed period T (0)

can be obtained by numerical time integration meth-
ods (e.g., Runge-Kutta or Newmark schemes). In gen-
eral, the initial guess (z(0)

p0 , T (0)) does not satisfy the
periodicity condition (4). A Newton-Raphson iteration
scheme is therefore to be used to correct an initial guess
and to converge to the actual solution. The corrections
∆z(0)

p0 and ∆T (0) are found by expanding the nonlinear
function

H
(
z(0)

p0 + ∆z(0)
p0 , T (0) + ∆T (0)

)
= 0 (5)

in Taylor series and neglecting higher-order terms
(H.O.T.).
The phase of the periodic solutions is not fixed. If

z(t) is a solution of the autonomous system (2), then
z(t + ∆t) is geometrically the same solution in state
space for any ∆t. Hence, an additional condition,
termed the phase condition, has to be specified in or-
der to remove the arbitrariness of the initial conditions.
This is discussed in detail in [Peeters et al., 2008].
In summary, an isolated NNM is computed by solv-

ing the augmented two-point boundary-value problem
defined by

F(zp0, T ) ≡
{

H(zp0, T ) = 0
h(zp0) = 0 (6)

where h(zp0) = 0 is the phase condition.

3.2 Continuation of Periodic Solutions
Due to the frequency-energy dependence, the modal

parameters of an NNM vary with the total energy.
An NNM family, governed by equations (6), there-
fore traces a curve, termed an NNM branch, in the
(2n + 1)-dimensional space of initial conditions and
period (zp0, T ). Starting from the corresponding LNM



at low energy, the computation is carried out by find-
ing successive points (zp0, T ) of the NNM branch us-
ing methods for the numerical continuation of periodic
motions (also called path-following methods) [Seydel,
1994]. The space (zp0, T ) is termed the continuation
space.
Different methods for numerical continuation have

been proposed in the literature. The so-called pseudo-
arclength continuation method is used herein.
Starting from a known solution (zp0,(j), T(j)), the next

periodic solution (zp0,(j+1), T(j+1)) on the branch is
computed using a predictor step and a corrector step.

Predictor step
At step j, a prediction (z̃p0,(j+1), T̃(j+1)) of the next

solution (zp0,(j+1), T(j+1)) is generated along the tan-
gent vector to the branch at the current point zp0,(j)

[
z̃p0,(j+1)

T̃(j+1)

]
=

[
zp0,(j)

T(j)

]
+ s(j)

[
pz,(j)

pT,(j)

]
(7)

where s(j) is the predictor stepsize. The tangent vector
p(j) = [pT

z,(j) pT,(j)]T to the branch defined by (6) is
solution of the system




∂H
∂zp0

∣∣∣
(zp0,(j),T(j))

∂H
∂T

∣∣
(zp0,(j),T(j))

∂h
∂zp0

∗∣∣∣
(zp0,(j))

0




[
pz,(j)

pT,(j)

]
=

[
0
0

]

(8)
with the condition

∥∥p(j)

∥∥ = 1. The star denotes the
transpose operator. This normalization can be taken
into account by fixing one component of the tangent
vector and solving the resulting overdetermined system
using the Moore-Penrose matrix inverse; the tangent
vector is then normalized to 1.

Corrector step
The prediction is corrected by a shooting procedure in

order to solve (6) in which the variations of the initial
conditions and the period are forced to be orthogonal
to the predictor step. At iteration k, the corrections

z(k+1)
p0,(j+1) = z(k)

p0,(j+1) + ∆z(k)
p0,(j+1)

T
(k+1)
(j+1) = T

(k)
(j+1) + ∆T

(k)
(j+1) (9)

are computed by solving the overdetermined linear sys-
tem using the Moore-Penrose matrix inverse




∂H
∂zp0
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(z

(k)
p0,(j+1),T

(k)
(j+1))

∂H
∂T

∣∣
(z

(k)
p0,(j+1),T

(k)
(j+1))

∂h
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(z

(k)
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0

pT
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[
∆z(k)

p0,(j+1)

∆T
(k)
(j+1)

]
=



−H(z(k)

p0,(j+1), T
(k)
(j+1))

−h(z(k)
p0,(j+1))
0


 (10)

where the prediction is used as initial guess, i.e,
z(0)

p0,(j+1) = z̃p0,(j+1) and T
(0)
(j+1) = T̃(j+1). The last

equation in (10) corresponds to the orthogonality con-
dition for the corrector step.
This iterative process is carried out until convergence

is achieved. The convergence test is based on the rela-
tive error of the periodicity condition:

‖H(zp0, T )‖
‖zp0‖ =

‖zp(T, zp0)− zp0‖
‖zp0‖ < ε (11)

where ε is the prescribed relative precision.

3.3 Algorithm for NNM computation
The algorithm proposed for the computation of NNM

motions is a combination of shooting and pseudo-
arclength continuation methods, as shown in Figure 1.
It has been implemented in the MATLAB environment.
Other features of the algorithm such as the step con-
trol, the reduction of the computational burden and the
method used for numerical integration of the equations
of motion are discussed in [Peeters et al., 2008].
So far, the NNMs have been considered as branches in

the continuation space (zp0, T ). An appropriate graph-
ical depiction of the NNMs is to represent them in a
frequency-energy plot (FEP). This FEP can be com-
puted in a straightforward manner: (i) the conserved
total energy is computed from the initial conditions re-
alizing the NNM motion; and (ii) the frequency of the
NNM motion is calculated directly from the period.

4 Numerical Experiment
The NNM computation method is now demonstrated

using a 2DOF system. More complex examples are
considered in [Kerschen et al., 2008; Peeters et al.,
2008], but due to space limitation, they are not de-
scribed herein.
The governing equations of motion of the system are

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0 (12)

The two LNMs of the underlying linear system are
in-phase and out-of-phase modes for which the two
DOFs vibrate with the same amplitude. The natural
eigenfrequencies are f1 = 1/2π ' 0.159 Hz and
f2 =

√
3/2π ' 0.276 Hz.

The FEP of this nonlinear system is shown in Fig-
ure 2. The evolution of NNM motions in the config-
uration space (i.e., the modal curves) are inset. The
backbone of the plot is formed by two branches, which



represent in-phase (S11+) and out-of-phase (S11−)
synchronous NNMs. They are the continuation of the
corresponding LNMs. The letter S refers to symmet-
ric periodic solutions for which the displacements and
velocities of the system at half period are equal but
with an opposite sign to those at time t = 0. The in-
dices in the notations are used to mention that the two
masses vibrate with the same dominant frequency. The
FEP clearly shows that the nonlinear modal parame-
ters, namely the modal curves and the corresponding
frequencies of oscillation, have a strong dependence on
the total energy in the system.
Another salient feature of NNMs is that they can un-

dergo modal interactions through internal resonances.
When carrying out the NNM computation at higher
energy levels, Figure 3 shows that others branches
of periodic solutions, termed tongues, bifurcate from
the backbone branch S11+. For instance, unsymmet-
ric periodic solutions are encountered and are denoted
by a letter U . On these tongues, denoted Snm and
Unm, there exist several dominant frequency compo-
nents, which results in a n:m internal resonance be-
tween the in-phase and out-phase NNMs. These addi-
tional branches correspond to internally resonant NNM
motions, as opposed to fundamental NNM motions;
they have no counterpart in linear systems.
Surprisingly, the ratio of the linear natural frequen-

cies of the system is
√

3. Due to energy dependence,
internal resonances can still be realized, because the
frequency of the in-phase NNM increases less rapidly
than that of the out-of-phase NNM. This clearly shows
that NNMs can be internally resonant without neces-
sarily having commensurate linear natural frequen-
cies, a feature that is rarely discussed in the literature.
This also underlines that important nonlinear phenom-
ena can be missed when resorting to perturbation tech-
niques, which are limited to small-amplitude motions.

5 Conclusion
In this paper, a numerical method for the computa-

tion of NNMs of mechanical structures was introduced.
The approach targets the computation of the undamped
modes of structures discretized by finite elements and
relies on the continuation of periodic solutions. The
procedure was demonstrated using a 2DOF system, and
the NNMs were computed accurately in a fairly auto-
matic manner. Complicated NNM motions were also
observed, including a countable infinity of internal res-
onances and strong motion localization.
This method represents a first step toward a practical

NNM computation with limited implementation effort.
However, two important issues must be addressed ade-
quately to develop a robust method capable of dealing
with large, three-dimensional structures:

(i) Fundamental NNMs with no linear counterparts
(i.e., those that are not the direct extension of the
LNMs) have not been discussed herein. These ad-
ditional NNMs bifurcate from other modes, and a

robust branch switching strategy will be developed
for their computation.
(ii) The method relies on extensive numerical sim-
ulations and may be computationally intensive for
large-scale finite element models. As a result, a
further reduction of the computational cost is the
next objective. To this end, a significant improve-
ment is to use sensitivity analysis to obtain the Ja-
cobian matrix as a by-product of the time integra-
tion of the current motion. An automatic time step
control, which selects the most appropriate time
step in view of the current dynamics, will also be
considered to speed up the computations.
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Figure 2. Frequency-energy plot of the 2DOF system computed with the proposed numerical method. NNM motions depicted in the configu-
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Figure 3. S11+ at higher energy levels and internally resonant NNMs (U21, S31, U41, S51).


