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Abstract: A mean square stability for the invariant manifolds of nonlinear sto-
chastic systems is considered. The first approximation linear systems for invariant
manifolds are introduced and a notion of P -stability (projective) is proposed. A
criterion for P -stability is obtained. Mean square stabilization of periodic and
quasiperiodic solutions of stochastically forced nonlinear systems is considered.
The necessary and sufficient stabilizability conditions are presented. The methods
for design of feedback stabilizing regulator for SDEs are suggested. The examples
of constructive solving of stochastic control problem are demonstrated.

Keywords: Invariant manifolds, control, cycles, tori, stochastic stability

1. INTRODUCTION

Many nonlinear phenomena of mechanics ob-
served under transition from the order to chaos
are frequently connected with a chain of bifurca-
tions: a stationary regime (equilibrium point) - pe-
riodic regime (limit cycle) - quasiperiodic regime
(torus) - chaotic regime (strange attractor). Each
such transition is accompanied by the loss of sta-
bility of simple attractor and new more compli-
cated stable attractor birth. Stability analysis of
appropriate invariant manifolds is key for unde-
standing of the complex behavior of nonlinear dy-
namical systems. The stability investigation and
control of stochastic systems are attractive from
theoretical and engineering points of view. Even
weak noise can result in qualitative changes in
the system’s dynamics. We consider the mean
square stability problem for invariant manifolds
of stochastic differential equations (SDEs). One of
the most important directions of stability analysis
is Lyapunov function technique (LFT) (Krasovskii
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(1963); Kats and Krasovskii (1960); Khasminskii
(1980); Kushner (1967)). LFT in research of a sta-
tionary point stochastic stability has been widely
studied by many authors (see Arnold (1974);
Arnold (1998); Mao (1994)).

The orbital Lyapunov functions were used in sta-
bility and sensitivity analysis via a quasipotential
of stochastic forced limit cycles (Ryashko (1996);
Bashkirtseva and Ryashko (2002); Bashkirtseva
and Ryashko (2004)).

Deterministic LFT for stability analysis of tori
and invariant manifolds is considered in (Ryashko
(2001); Ryashko and Shnol (2003)).

The aim of this work is to present a common
aproach to stability analysis for stochastically
forced invariant manifolds (cycles, tori and etc.).

The first approximation linear systems (linear ex-
tension systems) for invariant manifolds are intro-
duced and a notion of P-stability (projective) is
proposed. A general criterion for P-stability is ob-
tained. The stochastic stability analysis is reduced
to the estimation of the spectral radius of some



positive operator. Applications of this common
theory to exponential mean square stability of
stochastically forced limit cycles and invariant tori
are demonstrated. For important cases of limit cy-
cle in 2-dimensional stochastic system and 2-torus
in 3-dimensional system the parametric criteria
are given.

These stochastic stability criteria allow to solve
relevant control problems effectively. Mean square
stabilization of invariant manifolds of stochasti-
cally forced nonlinear systems is considered. The
necessary and sufficient stabilizability conditions
are presented. The methods for design of feed-
back stabilizing regulator for SDEs are suggested.
The examples of constructive solving of stochastic
control problem for periodic and quasiperiodic
solutions are demonstrated. As shown, this ap-
proach gives the useful analytical tool for analysis
and control of thin effects observed in nonlinear
stochastic models.

2. STOCHASTIC STABILITY OF
INVARIANT MANIFOLDS

Consider a deterministic nonlinear system

dx = f(x) dt (1)

where x is n−vector, f(x) is sufficiently smooth
vector-function of the appropriate dimension. It is
assumed that system (1) has an smooth compact
invariant manifold M (Fenichel (1971);Hirsch et
al. (1977);Wiggins (1994)).

Consider a function γ(x) in a neighbourhood U of
the manifold M . Here γ(x) is a point of manifold
M that is nearest to x, ∆(x) = x−γ(x) is a vector
of a deviation of a point x from manifold M . It
is assumed that a neighbourhood U is invariant
for systems (1). For each x ∈ M , denote by
Tx the tangent subspace to M at x. Denote by
Nx the orthogonal complement to Tx and by Px
the operator of orthogonal projection onto the
subspace Nx.

A standard model for random forced deterministic
system (1) is a system of Ito’s stochastic differen-
tial equations

dx = f(x)dt +
m∑
r=1

σr(x)dwr(t), (2)

where wr(t) (r = 1, ...,m) are independent
standard Wiener processes, σr(x) are sufficiently
smooth vector-functions of the appopriate dimen-
sion. To ensure M is an invariant of stochastic
system (2) we assume that

σr|M = 0 (3)

Definition 1. The manifold M is called expo-
nentially stable in the mean square sense (EMS-
stable) for the system (2) in U if there exist
K > 0, l > 0 such that

E||∆(x(t))||2 ≤ Ke−ltE||∆(x0)||2
where x(t) is a solution of system (2) with initial
condition x(0) = x0 ∈ U.

2.1 Stochastic linear extension system

An investigation on stability of a stationary point
for non-linear system is connected traditionally
with analysis of the appropriate first approxima-
tion linear system. The first approximation sys-
tems for stochastic nonlinear systems with limit
cycles and its stability analysis are considered in
Ryashko (1996). Now we extend this technique for
general invariant manifold case.

Consider stochastic linear extension system for
extended phase space M ×Rn

ẋ = f(x), x ∈M

ż = F (x) z +
m∑
r=1

Sr(x) z ẇr,
(4)

where

F (x) =
∂f

∂x
(x) , Sr(x) =

∂σr
∂x

(x).

Solution (x(t), 0) of system (4), because of pres-
ence of the family solutions (x(t), f(x(t))) with
nonvanishing component f(x(t)) can not be ex-
ponentially mean square stable in standard sense.
Here more weak analog of exponential stability
defined with the help of a projector Px is consid-
ered.

Definition 2. The invariant manifold M of system
(4) is called exponentially P -stable in the mean
square sense (system (4) is P -stable for short) if
there exist K > 0, l > 0 such that

E‖Px(t)z(t)‖2 ≤ Ke−ltE‖Px0z0‖2
for any solution (x(t), z(t)) of system (4) with
initial conditions x(0) = x0 ∈M, z(0) = z0 ∈ Rn.
Consider a space Σ of symmetrical n × n matrix
functions defined and sufficiently smooth on M
and satisfying singularity condition

∀x ∈M ∀z ∈ Tx V (x)z = 0.

Definition 3. A matrix V (x) ∈ Σ is called P -
positive definite if

∀x ∈M ∀z Pxz 6= 0 ⇒ (z, V (x)z) > 0.

In space Σ we shall consider a cone K of nonneg-
ative definite for any x ∈M matrices and set

KP = {V ∈ Σ|V is P − positive definite}.



Consider the matrix Lyapunov operator

L[V ] =
(
f(x),

∂V

∂x

)
+

+F>(x)V + V F (x) +
m∑
r=1

S>r (x)V Sr(x).

(5)

Theorem 1. The following statements are equiv-
alent:

(a) Manifold M for system (2) is EMS-stable;
(b) System (4) is P -stable;
(c) ∀W ∈ KP ∃ v ∈ KP L[V ] = −W .

2.2 A spectral stability criterion

Theorem 1 reduces a problem of manifold M sta-
bility to analysis of equation L[V ] = −W deci-
sion problem in the space of P−positive definite
matrices KP .

It is difficult to analyze the system stability by
direct investigation of decision problem for matrix
Lyapunov equation especially in cases close to
critical. Here we shall consider an extension of
the effective criteria (Ryashko (1979); Ryashko
(1981); Ryashko (1999)) based on positive opera-
tors spectral theory (Krasnosel’skii et al. (1985)).

Represent the operator L from (5) in the form

L = A+ S,
where

A[V ] =
(
f,
∂V

∂x

)
+ F>V + V F,

S[V ] =
m∑
r=1

S>r V Sr.

Consider the operator P = −A−1S.
Theorem 2. The manifold M is EMS-stable for
stochastic system (2) if and only if it holds that

(a) The manifold M of deterministic system (1)
is exponentially stable,

(b) The inequality ρ(P) < 1 holds.

Proof is similar to the proof of the Theorem 1
in (Ryashko (1996)) and is based on the spectral
theory of the positive operators (Krasnosel’skii et
al. (1985)).

Remark 1. Spectral radius ρ = ρ(P) 6= 0 defines
bifurcation value ε∗ =

√
1/ρ of random noises

intensity ε ≥ 0 for a system

dx = f(x)dt + ε

m∑
r=1

σr(x)dwr(t), (6)

The manifold M for system (6) is EMS-stable for
any ε < ε∗ and is unstable at any ε ≥ ε∗. Case
ρ = 0 means the system (6) is stable for any ε ≥ 0.

Remark 2. If one can not find spectral radius ρ
exactly then its estimations ρ1 < ρ < ρ2 may
be useful. Actually, the inequality ρ2 < 1 gives
sufficient and ρ1 < 1 gives necessary stability
condition.

3. STABILITY OF LIMIT CYCLES

In this section we assume invariant manifold M be
a limit cycle corresponding to T -periodic solution
ξ(t). Function ξ(t) gives us the natural parame-
trization of the orbit M. It defines the one-to-
one correspondence between cycle M points and
interval [0, T ) time moments.

Using this parametrization, we introduce func-
tions

F (t) =
∂f

∂x
(ξ(t)), Sr(t) =

∂σr
∂x

(ξ(t)),

V (t) = V (ξ(t)), P (t) = P (ξ(t))

defined on [0, T ]. In this case Σ is the space of T-
periodic symmetric n× n− matrices V (t) defined
and sufficiently smooth for any t ∈ (−∞,+∞)
such that the singularity condition V (t)f(ξ(t)) =
0 holds.

In space Σ we consider a cone K = {V ∈ Σ|V (t) is
nonnegative definite for any t ∈ (−∞,+∞)} and
set KP = {V ∈ Σ|V is P -positive definite}.
For the case of limit cycle the operator L has the
following representation

L[V ] =
∂V

∂t
+F>(t)V +V F (t)+

m∑
r=1

S>r (t)V Sr(t)

Now we can rewrite Theorem 3 in the following
form

Theorem 3. Let cycle M of the system (2) be
EMS-stable in U . Then for any W ∈ KP there
exists V ∈ KP satisfying the matrix differential
equation

∂V

∂t
+ F (t)>V + V F (t)+

+
m∑
r=1

S>r (t)V Sr(t) = −W (t) (7)

If for some W ∈ KP equation (7) has a solution
V ∈ KP then limit cycle M of the system (2) is
EMS-stable.

Stability of limit cycle in 2D-space. In the case
n = 2 one can find for spectral radius of operator
P the following simple representation

ρ(P) = −< β >

< α >

Here α(t) = p(t)>[F>(t) + F (t)]p(t), β(t) =
tr(
∑
Sr(t)S>r (t)), p(t) is a vector orthonormal



to limit cycle M at a point ξ(t), brackets < · >
mean integral with time averaging

< α > =
1
T

T∫

0

α(t)dt.

Inequality (famous Poincare criterion)

< α > < 0

is necessary and sufficient condition of exponential
stability of limit cycle M for the deterministic
system (1). Thus, the inequality ρ(P) < 1 written
as

< α+ β > = < tr[2F (t) +
m∑
r=1

Sr(t)S>r (t)] > < 0

is necessary and sufficient condition of EMS-
stability of cycle M for stochastic system (2) in
2D-case (Ryashko (1996)).

4. STABILITY OF 2-TORUS

It is assumed that invariant manifold M of system
(1) is an invariant two-dimensional toroidal man-
ifold. The following parametrization of 2-torus M
is considered.

Suppose some closed sufficiently smooth curve α
(equator) lies on the M (see Fig.1.).

This curve is defined by function α(s) on the
interval 0 ≤ s ≤ 1 with condition α(0) = α(1).
Consider a solution x(t, s) of system (1) with
initial condition x(0, s) = α(s). It is supposed
that the trajectory of x(t, s) leaves the point α(s)
of a curve α and after rotation around the torus
crosses curve α again. Let T (s) = min{ t >
0 | x(t, s) ∈ α } be the first return time of
trajectory x(t, s) on the curve α and x(T (s), s)
be the first return point. Let τ(s) be a point of
the interval [0, 1) where α(τ(s)) = x(T (s), s).
Here, τ(s) is the Poincare first return function for
intersections of curve α by the phase trajectories
of system (1).

Fig. 1. α is closed curve (equator), a = x(0, s) =
α(s) is initial point of solution x(t, s), b =
x(T (s), s) = α(τ(s)) is the first return point
of solution x(t, s) on the curve α

Torus M consists of phase trajectories x(t, s) of
system (1). Function x(t, s) defines one-to-one
correspondence between 2-torus M points and
points of set D = {(t, s) | 0 ≤ t < T (s), 0 ≤
s < 1}. The vector-functions

∂x(t, s)
∂t

,
∂x(t, s)
∂s

are linearly independent. For any point γ ∈ M
one can find t = t(γ), s = s(γ) such that
x(t, s) = γ.

Using a parametrization of 2-torus M connected
with a family of the solutions x(t, s) one can
introduce functions

F (t, s) =
∂f

∂x
(x(t, s)), Sr(t, s) =

∂σr
∂x

(x(t, s)),

V (t, s) = V (x(t, s)), P (t, s) = P (x(t, s))

defined on D. The equalities x(t, s + 1) =
x(t, s), x(T (s) + t, s) = x(t, τ(s)) allow to extend
these functions to the whole plane Π = {(t, s)| −
∞ < t < +∞, −∞ < s < +∞}.
Stability of 2-torus in 3D-space. In the case
n = 3 one can find for spectral radius of operator
P an explicit expression

ρ(P) = max
s

{
−< β >

< α >

}

Here α = p>[F> + F ]p, β = tr(
∑
SrS

>
r ),

brackets < · > mean time averaging

< α > = lim
T→∞

1
T

T∫

0

α(t)dt

Inequality
max
s

< α > < 0

is necessary and sufficient condition for exponen-
tial stability of 2-torus M for the deterministic
system (1). Thus, the inequality ρ(P) < 1 written
as

max
s

< α+ β >=

max
s

< tr[2F (t, s) +
m∑
r=1

Sr(t, s)S>r (t, s)] > < 0

is necessary and sufficient condition of EMS-
stability of 2-torus M for stochastic system (2)
in three-dimensional case.

Remark 3. The function γ(s) =< α + β > for
quasiperiodic case is a constant

γ(s) ≡ 1
S

∫

M


2

n∑

i=1

∂fi
∂xi

+
m∑
r=1

n∑

i,j=1

(
∂σri
∂xj

)2

 dx,

where S is area of torus M .

If x(t, s) is a cycle with period T (s) : x(t +
T (s), s) = x(t, s) then



γ(s) =
1

T (s)

T (s)∫

0

(α(t, s) + β(t, s))dt.

If torus consists of cycles then values of function
γ(s) can be various for different cycles. If solution
x(t, s) converges to a limit cycle x(t, s∗) as t →
∞ then γ(s) = γ(s∗). If a torus consists of
alternating stable and unstable cycles then γ(x)
is step function.

5. STABILIZATION

Consider a stochastic system with a control of the
form

dx = f(x, u)dt +
m∑
r=1

σr(x)dwr(t), (8)

where x is n−dimensional state variable, u is l-
dimensional vector of control functions, f(x, u),
σ(x) are vector functions of the appropriate di-
mension, wr(t) (r = 1, ...,m) are independent
standard Wiener processes. It is supposed that for
u = 0 the system (8) has invariant manifold M .

The stabilizing regulator we shall select from
the class R of admissible feedbacks u = u(x)
satisfying conditions:

(a) u(x) is sufficiently smooth and u|M = 0;
(b) for the deterministic system

dx = f(x, u)dt

the manifold M is exponentially stable in the
neighbourhood U of M .

The analysis of stabilization problem of manifold
M for system (8) with control function u = u(x)
is connected with investigation of corresponding
linear extension system

ẋ = f(x, 0), x ∈M

ż = Fu(x) z +
m∑
r=1

Sr(x) z ẇr

(9)

where

Fu(x) =
∂f(x, 0)
∂x

+
∂f(x, 0)
∂u

∂u

∂x

Sr(x) =
∂σr(x)
∂x

.

Consider Taylor’s expansion of control function
u(x) at a point γ

u(x) = u(γ) +
∂u

∂x
(γ)(x− γ) +O(‖x− γ‖3).

For γ = γ(x) ∈M we get

u(x) =
∂u

∂x
(γ(x))∆(x) +O(‖∆(x)‖3).

As we see, a first approximation control function
near M for small deviations ∆(x) = x − γ(x) is
the feedback

u1(x) =
∂u

∂x
(γ(x))∆(x). (10)

As it follows from (9), the stabilization capabilities
of control u are completely determined by first
approximation u1(x) of a function u(x) and are
independent on higher order terms. It allows to
restrict our consideration by simpler regulators in
the following form

u(x) = K(γ(x))∆(x). (11)

Here K(x) is the feedback matrix coefficient.

Under these restrictions linear extension system is
following

ẋ = f(x, 0), x ∈M

ż = FK(x) z +
m∑
r=1

Sr(x) z ẇr

(12)

where
FK(x) = F (x) +B(x)K(x)P (x),

F (x) =
∂f(x, 0)
∂x

, B =
∂f(x, 0)
∂u

.

Consider set of feedback matrices

K = {K(x)| system (12) for Sr = 0 is P− stable}
and operators

AK [V ] =
(
f,
∂V

∂x

)
+ F>KV + V FK ,

S[V ] =
m∑
r=1

S>r V Sr,

PK = −A−1
K S

Theorem 4. The manifold M is EMS-stabilizable
for stochastic system (8) with feedback (11) if and
only if it holds that

(a) K 6= ∅,
(b) The inequality infK∈K ρ(PK) < 1 holds.

The feedback (11) with K ∈ K EMS-stabilizes
stochastic system (8) if inequality ρ(PK) < 1
holds.

This Theorem reduces stabilization problem to
minimization of operator PK spectral radius.

5.1 Examples

Stabilization of cycle. For the case of cycle on a
plane (n = 2) one can find for spectral radius of



corresponding operator PK the following simple
representation

ρ(PK) = − < β >

< α > +2 < b>Kp >

Here α = p>[F> + F ]p, β(t) = tr(
∑
SrS

>
r ), b =

B>p.

Under restriction b(t) 6= 0 at some point t ∈ [0, T ]
the spectral radius ρK is completely controllable
by choice of K. For any 0 < ρK < 1 one can find
matrix K from equation

< b>Kp > = −< β >

2ρK
− < α >

2

The regulator (11) with found here matrix K will
stabilize cycle M for stochastic system (8).

Stabilization of torus. For the the case of 2-torus
in 3D-space a spectral radius of operator PK can
be written as

ρ(PK) = max
s

{
− < β >

< α > +2 < b>Kp >

}

The necessary and sufficient conditions of stability
ρ(PK) < 1 look like

max
s

< α+ β + 2b>Kp > < 0.

This inequality allows to find matrix K of stabi-
lizing regulator (11) for stochastic system (8) in
case of 2-torus constructively.

6. CONCLUSION

Mean square stability analysis of the invariant
manifolds of nonlinear stochastic systems was de-
veloped. Obtained criterion of P -stability allows
(see Theorems 1) to investigate nonlinear systems
stability using the first approximation linear sys-
tems. A spectral variant of P -stability criterion
(see Theorem 2) is useful tool for constructive
analysis and stabilization of limit cycles and tori.
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