
PHYSCON 2011, León, Spain, September, 5–September, 8 2011

MOVEMENT OF A RIGID BODY THROUGH THE
BOUNDARY OF A VISCOUS MEDIA

Dmitry S. Zavalishchin
Department of Optimal Control

Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences
S. Kovalevskaya str., 16, Ekaterinburg, GSP–384, 620990, Russia

Department of Applied Mathematics
Ural Federal University named after First President of Russia B.N. Yeltsin

Mira str., 19, Ekaterinburg, 620002, Russia
zav@imm.uran.ru

Abstract
This article deals with mathematical model of a rigid

body movement through the boundary of a viscous me-
dia. Movement is performed in a plane. Such move-
ment of a body is described by system of the differ-
ential equations. The problem of attainability set con-
struction of corresponding dynamic system in a class
of the continuous limited controls is solved. Necessary
conditions of optimality in the form of Euler–Lagrange
equations in a problem of overcoming of media border
with the minimum power consumption are received.
Dependence of the trajectory of body movement on an
occurrence in border between environments with dif-
ferent density is researched.
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1 Introduction
The control problem of objects motions in various me-

dia is actual. Various works which are produced in
coastal shelves, such as a lining of pipelines, search
of mineral deposits, service works are at the bottom
of the given researches [Appazov, Lavrov and Mishin,
1966; Beletskii, 1973]. Construction adequate 3D
models considering all physical nuances is a difficult
task. Therefore we will be limited to flat consideration
in absence of forces of a superficial tension. Models
of this kind were considered in the book [Zavalishchin,
2002]. We also will consider only a movement through
border of media. The created model can be used for
design of perspective samples of new machines.

2 Mathematical model
In this section, we deal with construction of the model

of moving through the boundary of a viscous media of

solid body (see Fig.1) in plane Oxy. The medium of
smaller density is located above axis Ox. More dense
one is located below axis Ox. Body movement only
through the border of viscous media is considered. In
the initial state lt = l and in final state lt = 0. Here
l – length of the body. Thus the length of a tail lt in
the first medium changes from l to 0. Length of the
body part being in the second one is equal l − lt. The
location of the body inertia center lc depends on size
of body immersing in the second medium. It should be
noted that the inertia center doesn’t coincide with the
center of mass.

2.1 Forces and moments
The state of the body is described by the generalized

coordinates x, y and ϕ. Let V be the vector of centroid
velocity V = (ẋ; ẏ)T , F be the force acting along a
body axis F = (F sin ϕ;F cos ϕ)T , U be the angular
moment, E be the unit vector E = (sin ϕ; cos ϕ)T , D
and D⊥ are the drag force and lift force respectively

D = (−D sin(ϕ− α);−D cos(ϕ− α))T ,

D⊥ = (D⊥ cos(ϕ− α);−D⊥ sin(ϕ− α))T .
(1)

It is necessary to note that because of presence of two
viscous media drag forces and lift forces will be differ-
ent. Let the body moves from the first medium 1 to the
second medium 2. Forces acting in different media will
create the moment. The drag force and lift force acting
in i-th medium are equals

Di = (−Di sin(ϕ− α);−Di cos(ϕ− α))T ,

D⊥
i = (D⊥

i cos(ϕ− α);−D⊥
i sin(ϕ− α))T .

(2)
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Figure 1. Forces and moments acting on a body.

2.2 About Hydrodynamic Forces and Coefficients
Let a body of bounded size with sufficiently smooth

boundary S move in fluid. One of the fluid mechan-
ics axioms is the sticking condition: at the body sur-
face points the velocity vector of fluid particle is equal
to the velocity vector of the corresponding body point.
This condition implies that in the case of translational
motion of the body the following equality is fulfilled at
its surface (see [Slezkin, 1955])

(∂v
∂x

)∗
n = 0, (3)

where n is the unit vector of the outward normal to the
surface S at the point x.
The stress on an element dS of the body surface is

calculated by the formula pn = Pn, where n is the
unit vector of the outward normal to dS. This equality
and (3) yield the formula for the principal vector of the
forces acting from fluid upon the body surface (hydro-
dynamic forces)

R =
∫

S

∫ (
−pE + µ

∂v
∂x

)
n dS. (4)

We need further the so-called moving coordinate sys-
tem Ocy1y2y3 with the body inertia center as the origin
and the axes rigidly connected with the body.
To find the principal vector and momentum, one has

to calculate on the body surface the pressure and the
Frechet derivative of the fluid velocity vector. To do
this, one has to solve a certain boundary-value prob-
lem for the vector-valued Navier–Stokes equation. This
equation is written out below in the moving system
Ocy1y2y3 with axes parallel to the corresponding axes
of the system Ox1x2x3 (the body is assumed to move
translationally). Let V be the velocity vector of the

body, and xc(t) be the radius vector of its inertia cen-
ter. In the moving coordinate system, denote the abso-
lute velocity vector of fluid and the pressure as follows:
v̂(t, y) = v(t, xc(t) + y), p̂(t, y) = p(t, xc(t) + y).
Then the Navier–Stokes equation is of the form

∂v̂
∂t

= −∂v̂
∂y

(v̂−V)− 1
ρ

(∂p̂

∂y

)∗
+νdiv

∂v̂
∂y

+F, (5)

where F is the strength of the gravity field, ρ is the fluid
density, ν = µ/ρ is the kinematic viscosity coefficient.
Now, the above-mentioned boundary-value problem

is reduced to finding the solution of a system of par-
tial differential equations, namely, equation (5) plus the
equation of continuity divv̂ = 0. This solution must
satisfy the sticking condition v̂(t, y)

∣∣∣
S

= V and the

natural condition lim
y→∞

v̂(t, y) = 0.

A flow is accepted to call established or stationary if
the field of its absolute velocity vectors in the moving
coordinate system does not change in time. Obviously,
if the body moves translationally, the necessary condi-
tion for the flow to be stationary is V=V0 =const.
Suppose that the body has a symmetry axis. If the

body moves in such a manner that this axis remains in
a given plane (for example, in the plane Oxy), then, ac-
cording to the statics theorems for an absolutely solid
body, the totality of forces acting from fluid upon the
body can be reduced to the resultant one called the hy-
drodynamic force. As usual the point of intersection
of the symmetry axis and the line of the hydrodynamic
force action is referred to as center of pressure. The hy-
drodynamic force is resolved into components parallel
to the velocity vector V of the body inertia center and
perpendicular to V. The first component D is known
as the drag force, and the second one D⊥ is called the
lift force.
Let i, j be the unit vectors in the directions Ox and

Oy respectively. We need further a mapping that puts
a vector a = a1i + a2j into correspondence to a⊥ =
−a2i + a1j. Let V be the magnitude of V, D be that
of the drag force, and D⊥ be that of the lift force. For
needs of forthcoming references, it is convenient to for-
mulate the following assertion as lemma.
The drag and lift forces are calculated by the formulae

D = sign(V,D)DV −1V,

D⊥ = sign(V,D)sD⊥V −1V⊥,

s = sign((V, e)(V, e⊥)),

(6)

where e is the directing vector of the body symmetry
axis (see Fig. 2).
In the framework of the listed constraints, the coef-

ficient CD is a function of the body shape, Reynolds
number and, probably, the angle of attack between the
velocity vector of the body inertia center and the sym-
metry axis, i.e., CD = CD(shape,Re, α) [Daily and
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Figure 2. Drag and lift forces and the angle of attack

Harleman, 1966]. To determine the angle of attack (see
Fig. 2), one can use the formula

α = −s arccos |(e,V/V )|. (7)

The nonstationarity of the flow can be partially taken
into account by means of introducing the apparent ad-
ditional mass [Daily and Harleman, 1966].

2.3 Movement equations
Kinetic energy is equal to

T =
1
2
m(ẋ2 + ẏ2) +

1
2

ml2

3
ϕ̇2. (8)

Using the Lagrange equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi (9)

one can obtain body movement equations

mẍ = Qx

mÿ = Qy

1
3ml2ϕ̈ = Qϕ

(10)

The generalized forces corresponding to the general-
ized coordinates will be the following

Qx =−Dsin(ϕ−α)+D⊥cos(ϕ−α)+F sin(ϕ)

Qy =−D cos(ϕ−α)−D⊥ sin(ϕ−α)+F cos(ϕ)−mg

Qϕ = U + M
(11)

The expression for the power of the control forces and
momentums is of the form

Ẇ = (ẋ sin ϕ + ẏ cosϕ)F + ωU . (12)

The system of equations (10) and (11) describes body
movement. Here D and D⊥ resultant forces acting in
the point defined by lc

lc =
(D1 + D2)lt + D2l

2(D1 + D2)
(13)

3 Optimization problem
Now the optimization problem can be formulated.
Problem 1. It is required to find controls F 0(t) U0(t),

0 6 t 6 tk, moving with the minimum power ex-
penses, W (tk) → min, a body for given time tk for
the set distance.
Such problem is nonregular. Euler–Lagrage equations

do not contain controls and do not allow to define their
optimum values in terms of the phase and interfaced
variables.
The problem reduction is proved by that body move-

ment occurs in a potential gravity field. And the
changeable part of work of control forces is used on
change of body kinetic energy. Therefore the varied
part of work will be equivalent to power expenses for
overcoming of hydrodynamic forces of resistance and
will be equal to scalar product (DT ,V)

N = −D sin(ϕ− α)−D⊥ cos(ϕ− α)−Mϕ (14)

Power of hydrodynamic forces is equal to

Ṅ =D(ϕ̇−α̇)(−cos(ϕ−α)+sin(ϕ−α))−Mϕ̇ . (15)

Now it is possible not to consider dynamics of a body,
having assigned function of control to derivatives of the
generalized coordinates. Thus the initial problem is to
an equivalent following problem.
Problem 2. It is required to find functions V(t) =

(Vx(t), Vy(t))T ω(t), minimizing terminal functional
N(tk) at dynamical relations (12) and restrictions

x(tk) = xk , y(tk) = yk , ϕ(tk) = ϕk ,

cos α = ẋ cosϕ + ẏ cos ϕ .
(16)

According to classical Euler–Lagrange procedure it is
necessary to write out Hamiltonian

H = λ0Ẏ + λ1ẋ + λ2ẏ + λ3ϕ̇

and conjugated system with boundary conditions

−λ̇0 = ∂H
∂N

= 0 , λ0(tk) = ∂Φ
∂N(tk)

−λ̇1 = ∂H
∂x

, λ1(tk) = ∂Φ
∂x(tk)

−λ̇2 = ∂H
∂y

, λ2(tk) = ∂Φ
∂y(tk)

−λ̇3 = ∂H
∂ϕ

, λ3(tk) = ∂Φ
∂ϕ(tk)

(17)
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Figure 3. The angles of orientation and attack and control forces

Here Φ = N(tk)+ ν1(x(tk)−xk)+ ν2(y(tk)− yk)+
ν3(ϕ(tk)−ϕk) is functional describing boundary con-
ditions.
Euler–Lagrange equations

∂H
∂ẋ

= λ1 + ∂Ṅ
∂ẋ

= 0

∂H
∂ẏ

= λ2 + ∂Ṅ
∂ẏ

= 0

∂H
∂ϕ̇

= λ3 + ∂Ṅ
∂ϕ̇

= 0

(18)

allow to calculate Lagrange multipliers and at having
substituted them in the conjugated system (17) to write
out the equations of optimal movement

ẋ = Vx , d
dt

(
∂Ṅ
∂Vx

)
= ∂Ṅ

∂x

ẏ = Vy , d
dt

(
∂Ṅ
∂Vy

)
= ∂Ṅ

∂y

ϕ̇ = ω , d
dt

(
∂Ṅ
∂ω

)
= ∂Ṅ

∂ϕ

(19)

On Fig. 3 the basic modes of border overcoming are
presented.

4 Conclusion
Thus the system of the differential equations describ-

ing a rigid body movement through the boundary of a

viscous media is obtained. It allows to model various
modes of such movement.
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