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Abstract
This work solves the problem of automatic segmenta-

tion of medical images in DICOM format using machine
learning methods. A new developed tool is used in the
form of a separate module for labeling medical data in
the DICOM format. The trained model, proposed in the
paper, can be useful in the tasks of muscle segmentation.
One can apply it in different ways, but some of the most
common include assessment of diseases related to mus-
cles, and sarcopenia is one of them.

The further applications of the muscle segmentation
model may include examining various medical cases
with patients, that tend to have muscle-related diseases.
For instance, detecting cachexia may be one of the
extensions of the model’s application field.
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1 Introduction
Currently, a large number of various modality images

are used in medical diagnostics, which require process-
ing and analysis: segmentation [Shen et al., 2023], de-
tection and classification [Salemi et al., 2022], calcu-
lation of diagnostically significant parameters [Ploskikh
and Kotina, 2021]. Deep learning approaches are widely
used for these purposes [Liu et al., 2021].

DICOM (Digital Imaging and Communications in
Medicine) is a de facto standard that establishes rules for
exchanging medical images (X-Ray, MRI, CT, SPECT,
PET) and associated information between equipment
from different suppliers, computers and hospitals.

DICOM files have a .dcm extension and provide
means of storing information under individual tags. DI-
COM consists of a set of header and image data pack-

aged into a single file. The header information is or-
ganized into a consistent and standardized series of
tags. By extracting data from these tags, one can access
important information regarding patient demographics,
study parameters, and so on.

There are dosens of medical imaging softwares avail-
able to work with medical data, however some of them
lack on pithiness and are overloaded with numerous
functions, sometime tending to be redundant in special
cases, when only few of them are truly needed. What
is more, to create masks of ROI, that are to be used in
machine learning tasks, one usually needs to write ad-
ditional scripts to enable convertation of the coordinates
array, forming a contour, into .json format. Our label-
ing module solves this problem, simultaneously yielding
both .dcm and .json files of the current study.

Sarcopenia is a muscle disease, sometimes reffered
as a confition, associated with loss of muscle mass,
strength and functionality. It is believed that 5–15% of
the population aged 60 and over 80 years have sarcope-
nia. Timely detection, correct diagnosis and treatment
can affect the patient’s subsequent condition, because
the presence of sarcopenia increases the risk of falls and
fractures, loss of the ability to cope with everyday activi-
ties, and also complicates the rehabilitation process after
surgery.

It’s important to have a model for segmenting muscle
tissues, as then one will have the ability to calculate var-
ious indicators which will allow to construct different
prognostic models, helping medical workers ease their
everyday tasks and make diagnosing processes more ac-
curate.

Constructing contours of medical images requires a
lot of time, as well as suitable software. This work
presents a manual contouring module that works with
.dcm format files as input and, after constructing the
contours, yields a corresponding .dcm file and a con-
structed mask, which is stored in .json format as an
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array of points (x, y) ∈ R2 forming a polygon delimit-
ing the ROI of the image.

Baseline data includes three-dimensional CT scans
taken from internet sources [Roth et al., 2015], [Simpson
et al., 2023], [Kirk et al., 2016], [Tong and Li, 2022]. Af-
ter labeling the images using the proposed DICOM con-
touring module, a total of 288 .dcm images with corre-
sponding muscle masks were available during training.

2 Problem Statement
The goal of this work is to build a neural network for

processing and segmenting medical images in the DI-
COM format. As contouring is often done manually by
radiologists, the process can be very time-consuming.
That is why automation of the actions mentioned above
will significantly reduce the time spent by specialists.

The modern trend towards creating systems and al-
gorithms using artificial intelligence (AI) [Fradkov A.,
2022] generates a large number of tasks, related to DI-
COM processing. There is currently a shortage of tools
that would provide tools for PACS systems and DICOM
contouring images, with the ability to export data and
subsequent editing contours saved in the system. There
are various tools that in either event perform data label-
ing. For example, in the CoreSlicer service described
in article [Mullie and Afilalo, 2019], one can outline ar-
eas of the image and export circled areas, but they are
saved in .png raster format, which makes it difficult to
work with the original image. Another tool image viewer
medDream [Med, ] from Softneta allows create contours
in video of geometric shapes and free contours, hand-
drawn, but does not allow you to export them. OHIF
Viewer Project [OHI, ] from the Open Health Imag-
ing Foundation has a large variety of instruments, incl.
marking the image with contours and allows you to ex-
port these contours in .csv format, but has limitations:
contours can only be in video of geometric shapes - el-
lipse and rectangle. Thus, one of the tasks of this paper
is to develop a separate module for la’beling images in
.dcm format.

Once there is a muscle segmentation model it’s possi-
ble to use it in assessing sarcopenia, which may be done
by calculating different metrics related to muscle tissues
density distribution and measuring various coefficients,
that should be presupplied and recommended to be cal-
culated by specialists and radiologists.

As a great amount of papers suggest, it’s desirable to
choose the axial scans at the level of the third lumbar
vertebra, usually signed as L3 [Kim et al., 2020]. It is
believed that the examination of only one scan at the L3
level can replace the study of the whole patient’s body,
reducing both dimentionality as well as time and cost of
the study.

3 Contouring module
To label medical images, a module was developed that

implements the functionality of the PACS system and

provides tools for manual DICOM image contouring.
This module is an information system that includes a
PostgreSQL database server, a server application writ-
ten in the Go language, a client application created using
the React.js framework, and two nginx web servers for
accessing the server and client applications. All of the
above components are containerized in the Docker vir-
tualization system for easy deployment of the system on
the user’s machine. User access to the system is through
a graphical interface in a web browser.

The developed system has the following modules:

Objects list module. This module is implemented as
a table that displays the fields of an object and has pag-
ination settings. Above the table there is a navigation
chain that allows the user to return to the previous page
of the object. Navigation chain levels differ according
to the level of the DICOM object hierarchy: ”Study” →
”Series” → ”Instance”.

Object view module. When a row in the table is
clicked in the objects list module, the page for view-
ing the object located in the selected row opens. If the
selected study or series contains children (for example,
”Study” contains ”Series” objects and ”Series” contains
”Instance” objects), a similar table of child objects will
appear on the object view page.

DICOM image viewer module. The Cornerstone.js
library was used to develop this module. The module can
receive DICOM images in accordance with the WADO
standard, display them and provide some basic image
manipulation tools (zooming, panning, window width
and center adjustment, viewing a series of images). Also
in this module are tools for working with contours - cre-
ating, deleting, saving and exporting.

DICOM file upload module. The module loads stud-
ies into the system using the STOW specification of the
DICOMweb standard. For each selected file, the module
sends a corresponding request to the server.

In order to get a file with a markup, you need to se-
lect the required study instance in the system, select the
contours using the appropriate tool in the DICOM image
viewer, and use the export button. The system will send
two files to the user, a DICOM image file with a .dcm
extension and a contours file with a .json extension.
Using these files, you can create a DICOM image mask
without converting to a bitmap format, which can cause
data loss.

An example of working with contouring module is
shown below on Figure 1.

4 Data preprocessing
During the neural network training process, the sup-

plied data from the training set is preprocessed to achieve
the best training results. The image processing scheme



CYBERNETICS AND PHYSICS, VOL. 12, NO. 3, 2023 203

Figure 1. An interface of contouring module

can be represented as a sequence of the following ac-
tions:

1. extracting an array of image pixels from a .dcm file,
2. scaling the image using RescaleIntersept and

RescaleSlope, presupplied by the .dcm file,
3. applying windowing to a scan,
4. augmentation of the image and the corresponding

muscle mask with subsequent conversion of the
numpy array into tensor,

5. normalizing the image and its mask.

Only after the actions have been completed, the data is
fed to the input of the neural network during the learning
process. It is important to note that during model train-
ing, work is done with arrays of .dcm images. It would
be possible to use the corresponding .png images of the
pictures instead, but in this case a lot of priceless for the
neural network information would be lost, because DI-
COM files are encoded with 16 bits, while .png images
are compressed to 8 bits encoding. As a result, the 216

shades of gray in the original image are reduced to 28 in
the .png image, which may result in the loss of valuable
information for the neural network, which it can take into
account during the training process.

Scaling. To correctly interpret information on medical
images, it is necessary to first make additional trans-
formations that will make the image more “readable”
for a specialist. Pixel values extracted from a DICOM
file often do not correspond to tissue density. Thus, in
order to solve this problem, you need to apply a lin-
ear transformation on the pixel values, taking into ac-
count RescaleIntercept and RescaleSlope tags, stored in
a .dcm file. These tags are determined by the hardware
manufacturer.

Windowing. DICOM images have a wide HU range,
and a windowing process is used to allow people to see
the corresponding structures in the image. Windowing
functions can be understood as some means of manip-
ulating HU values in order to change the appearance of
the image in order to ensure the selection of certain struc-
tures and tissues of a patien. The window has 2 values:
W — window width, and L — window level. A wider
window will allow one to observe a larger range of pixel
values, which will result in greater contrast in the image.
The window level specifies the midpoint of the window

width and corresponds to the pixel value that will be lo-
cated in the middle of the entire considered HU inter-
val. The window level determines the brightness of the
image. The values of W, L for windows allowing visu-
alization of muscle tissue vary in the depending on the
specific task and data. It was experimentally established
that preprocessing of images with the following training
of the neural network should be carried out with win-
dow values of W = 200, L = 80. A window with exactly
these parameters will allow muscle tissue to be best high-
lighted, while intestines and bones will be clearly sepa-
rated, and fatty and soft tissues will not be visualized at
all.

Normalization. Having normalized data as input is
very important to obtain accurate results from the neural
network during the training phase, as it affects the proc-
ces of optimization (RMSProp, NAdam, etc.) ensuring
that gradients will fluctuate substantianally. Usually the
goal is to ensure that the values are enclosed in interval
[0, 1]. During the training process, the normalize func-
tion of the pytorch library was used to normalize the
images.

Data augmentation. To increase the number of train-
ing examples, data is augmented during the training pro-
cess. Augmentation means the application of random
transformations on data, such as changes in brightness
or contrast, adding noise, random mirror shifts, reflec-
tions and rotations.

The use of augmentation makes it possible to make the
model more robust to natural noise and interference in
the data.

5 Dataset overview
The dataset which was used while training the model

contains 288 .dcm files and corresponding masks in
.png format. Volume CT studies were taken from dif-
ferent sources [Roth et al., 2015], [Simpson et al., 2023],
[Kirk et al., 2016], [Tong and Li, 2022]. In each study
the scan at the level of L3 was manually chosen and la-
beled in the proposed contouring module, which yieled
.dcm and .json of a study. Additional code was writ-
ten to extract an array of points from .json file and
perform further creation of a .png binary mask, con-
sisting of zeros and ones, where ones indicate pixels of a
mask.

Exploratory Data Analysis (EDA). Before training
the model it’s important to know various data charac-
teristics in order to obtain stable learning process. An
EDA was carried out including calculating distribution
of muscle densities on scans as well as distribution
of means and standart deviations of muscle densities
throughout the whole dataset. A metadata .csv file was
created in order to store valuable metainformation that
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Figure 3. An example of a patient with low amount of dense mus-
cles. Taking into consideration the area and mean/std values, one may
conclude, that this patient is prone to sarcopenia

Figure 4. A diametrically opposed to Figure 3 example of a patient
with well-developed dense muscles with high muscle area. There’s
much more pixels with high HU values that on Figure 3

may shad light on the structure of the data. The meta-
data file is a dataframe with the following columns: Pa-
tientAge, PatientSex, MuscleDensityMean, MuscleDen-
sityStd and MuscleArea where MuscleDensityMean and
MuscleDensityStd correspond to the mean and standard
deviation values of muscle densities on a given scan re-
spectively, while MuscleArea is the are of the muscles
measured in mm2. Other values were extracted from the
.dcm file of the study.

The majority of studies included patients 50 years of
age and older, where the amount of men prevailed over
the number of women. There wasn’t found any signifi-
cant correlation between the age and the mean and stan-
dart deviation of muscle densities values of patients, but
the EDA showed that men tend to have greater area of
muscles compared to women. One should notice, that
there is some positive correlation between muscle den-
sity statistics and the muscle area (see Figure 2). It in-
dicates, that in many cases when the muscle area is rela-

tively low, mean and std values are not big eather. This
realization plays the key role in furher applications of
muscle segmentation model in medical tasks, as there is
a possibility to predict the probability of sarcopenia via
numerous muscle characteristics, such as muscle area,
mean and standard deviation values of muscle density.
On Figure 3 one can see, that there isn’t much pixels
with high HU values, meaning that there is a little per-
centage of dense muscles on this image, and a patient is
prone to have a muscle-related diseases, while on Figure
4 there is a great amount of pixels with large HU values,
indicating high density of muscle groups.

Figure 2. Correlation matrix between features in the metadata

6 Model overview
Architecture. As for the model, the U-Net architec-
ture was chosen. Medical scans in .dcm format of size
(512, 512) were used from a labeled dataset containing
288 scans. Masks were build via proposed contouring
module.

Each step contraction and expansive paths have two 3×
3 convolutional layers, followed by BatchNorm2d and
ReLU. In the original paper U-Net [Ronneberger et al.,
2015] was used with 0 padding, but we use 1 so that final
feature map is not cropped.

In the contracting path the feature map is down-
sampled with a 2 × 2 max pooling layer. Then, at the
up-sampling, the feature map is up-sampled with a 2× 2
up-convolution. After Conv2d, BatchNorm2d and ReLU
Dropout is applied with p = 0.4.

At every step in the expansive path the corresponding
feature map from the contracting path is concatenated
with the current feature map.

The training was carried out with batch size =
10, learning rate equals 0.00075 in the beginning and
changes throughout the learning process. The model has
53 layers and 117,489 trainable parameters. The model
was built from scratch.

Metrics. The Dice coefficient (Sørensen–Dice coeffi-
cient) was chosen as the main metric for training the
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Table 1. Metrics on test set

accuracy precision recall IoU specificity

0.91 0.89 0.83 0.72 0.76

Table 2. Main segmentation metrics. TP,TN,FP,FN — True
Positive, True Negative, False Positive and False Negative.

Metrics Values

TP
∑ℓ

i=1[yi = 1][a(xi;w,w0) = 1]

TN
∑ℓ

i=1[yi = 0][a(xi;w,w0) = 0]

FP
∑ℓ

i=1[yi = 0][a(xi;w,w0) = 1]

FN
∑ℓ

i=1[yi = 1][a(xi;w,w0) = 0]

Dice
2|Ypred] ∩ YGT |
|Ypred|+ |YGT |

=
2TP

2TP + FP + FN

accuracy
TP + TN

TP + TN + FP + FN

precision
TP

TP + FP

recall
TP

TP + FN

IoU
TP

TP + FP + FN
=

|Ypred ∩ YGT |
|Ypred ∪ YGT |

specificity
TN

TN + FP

Figure 5. Metrics during validation

model and assessing the quality of segmentation:

Dice(YGT , Ypred) =
2|YGT ∩ Ypred|
|YGT |+ |Ypred|

, (1)

where YGT is the correctly marked mask on the ob-
ject in question (GT is ground truth), and Ypred is
the prediction of the U-net. Other metrics such as
accuracy, precision, sensitivity (recall), IoU and
specificity were also calculated.
Accuracy shows the proportion of correctly predicted

mask pixels to all predictions; precision refers to the
proportion of correct positive predictions, or what frac-
tion of pixels assigned to a mask class actually belongs

to it, while recall (sensitivity) shows what part of the
mask pixels were detected by the algorithm.

In medicine, the metrics specificity, sensitivity are
accepted as standards for assessing segmentation. In
mask pixel prediction problems, sensitivity, which is
the same as recall and TPR (True Positive Rate), mainly
focuses on the ability to make TP predictions, while
specificity, also known as TNR (True Negative Rate)
evaluates the ability to correctly identify TN cases. The
sensitivity metric is often used in segmentation prob-
lems, but is less sensitive than F -measure-based metrics
such as Dice and IoU. However, specificity can lead
to misinterpretation of segmentation results if the con-
tent of this metric is misunderstood [Müller et al., 2022].
Specificity reflects the ability of the model to recognize
the minor class of the image.

The list of metrics and ways to calculate them are listed
in Table 2. In this table, a(xi, w, w0) denotes an answer
of the model and [·] stands for the binary indicator.

Loss function. DiceLoss was used as a loss fucntion,

DiceLoss(Ypred, YGT ) = 1−Dice(Ypred, YGT ) =

= 1− 2|Ypred ∩ YGT |
|Ypred|+ |YGT |

.

(2)

Optimizer. RMSProp (running mean square) was cho-
sen to carry out optimization process. Its implementation
can be found in pytorch. RMSProp is defined as

w := w − ηL′
i(x)⊘ (

√
G+ ε), (3)

where G := αG + (1 − α)L′
i(x) ⊙ L′

i(x) is a vector
of squared partial derivatives (⊘,⊙ — coordinate-wise
division and multiplication of vectors respectively).

7 Results
Learning for 100 epochs on GPU the U-net model

managed to achieve results showing over 0.80 in Dice
coefficient, which was chosen to be the main metric.
Other metric values calculated on test set are listed in
Table 1.

An example of U-net muscle tissue prediction is shown
below in Figure 6. It worths mentioning, that the result-
ing mask one can see in Figure 6 in the lower right is the
result of applying a sigmoid function to round predicted
mask’s values to 0 and 1 just in purpose of visualisation.
Those pixels, in which U-net is not much confident to
mark them as pixels truly belonging to the mask may be
rounded and interpreted in the incorrect way when the
specific threshold is not chosen. In the paper the thresh-
old was figured out to be 0, 5 however it is possible to
find a better value in the future explorations.

One should keep in mind this fact when building a clas-
sifier above muscle segmentation model. Thus, it is rec-
ommended to use non-rounded predictions of a model,
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as classificator can take an advantage of those pixels that
are not classified with sufficient confidence.

Figure 6. An example of U-net prediction

The process of model training is shown on Figure 7
indicating the change of loss during training and vali-
dation sections. It’s possible to train a better model on
richer dataset with less epochs, which is the subject of
further experiments.

Figure 7. Training loss

8 Conclusion
To sum up everything said above, the results of this

work include the trained U-net model for muscle seg-
mentation and the DICOM-contouring module. Further-
more, they can be used to label .dcm files of different
modalities, building masks of ROI and exporting them
as .dcm and corresponing .json of a mask, not only
for CT, but, for instance, MRI, as the only condition of
usage is the .dcm extention of the study.

It’s important to note that the model and contouring
module can be used in medical tasks, such as sarcopenia,
to carry out tasks of extracting muscle tissues from the

raw scans. Further tasks may include calculating met-
rics, suggested by specialists, which might have a poten-
tial of helping in diagnosing.
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