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Abstract
A problem of the optimal parameters choice for the

best state estimation of the linear system subject to un-
certain perturbations is considered. The problem is in-
terpreted as a differential game for the Riccati equation
that arises in the process of solution of the uncertain
minimax estimation. The game is realized by two play-
ers: the first player (an observer) can choose some ma-
trices of the system at any instant of time in order to
minimize the diameter of the informational set at the
end of the observation interval. The second player (an
opponent of the observer) tries to maximize the diame-
ter choosing the matrices which are multipliers at per-
turbations. All the choosing parameters are limited to
compact sets in appropriate spaces of matrices. The
perturbations in the system are subjected to integral
constraints. The payoff of the game is the Euclidean
norm of the inverse Riccati matrix at the end of the
process. A specific case of the problem with constant
matrices is considered. Methods of minimax optimiza-
tion, the theory of optimum control, and the theory of
differential games are used. Examples are also given.

Key words
observations’ control, parameters optimization, differ-

ential games.

1 Introduction
State estimation problems for uncertain determinate

linear systems are well examined at present, [Kurzhan-
ski and Vályi, 1996; Kurzhanski and Varaiya, 2014].
The main mathematical apparatus is connected here
with the theory of control and estimation under un-
certainty. In the special case of estimation with inte-
gral constraints for perturbations, the basic relations
are quite similar to the equations of the well-known
Kalman filter. But in the determinate theory the main
object of investigation is the informational set. The di-
ameter of this set may serve as the quality characteris-
tic of the observation process. The first player (an ob-

server) tries to minimize the diameter, and the second
player (an opponent of the observer) aims to prevent
it. Both players can choose the parameters that lie in
compact sets of matrices at any instant of time. Thus,
the problem is reduced to a differential game for the
Riccati equation of the process. As the diameter of the
informational set is proportional to the Euclidean norm
of the inverse Riccati matrix, the mentioned value is
taken as the payoff of the game. We consider the differ-
ential game in the class ‘counterstrategy/strategy’ and
use the approach connected with the Hamilton-Jacobi-
Bellman-Isaacs (HJBI) equation, [Krasovskii and Sub-
botin, 1988; Subbotin, 1999; Fleming, Soner, 2006].

We offer two ways that overcome the lack of the Lip-
shitz conditions and suggest a numerical scheme for
the solution of the problem. Note that problems of
observations’ control were considered in different as-
pects in [Grigoryev et al., 1986; Kurzhanski and Vályi,
1996; Kurzhanski and Varaiya, 2014; Ananiev, 2011;
Ananyev, 2015]. The results of the work may be used
both for quality improvement of measuring systems,
and for creation of counteraction systems of observa-
tion.

This work is organized as follows. Section 2 is de-
voted to the background of guaranteed estimation. In
section 3 our problem is formulated. In section 4 we
consider the most simple case of constant matrices in
the system. A special attention is paid to conclusions
under steady-state solutions of the Riccati equation. In
section 5 we pass to the common case. Concepts of
strategy, and counterstrategy are reminded. The HJBI
equation is written down, and the possibility of its so-
lution in generalized sense is discussed. In the last
section, problems of numerical solution are considered
and some examples are given.

2 Guaranteed Estimation
In this work, we consider the linear non-stationary

equations



ẋ(t) = A(t)x(t) +B(t)v(t), (1)

y(t) = G(t)x(t) + c(t)v(t), t ∈ [0, T ], (2)

containing an uncertain functionv(·), where
A(·), B(·), G(·), c(·) are bounded Borelian matrices;
x(t) ∈ Rn, y(t) ∈ Rm, v(t) ∈ Rk. Suppose that the
uncertain functionv(·) in (1) and (2) is constrained by
the inequality

‖v(·)‖2 =

∫ T

0

|v(t)|2dt ≤ 1, (3)

where| · | is the Euclidean norm. Besides, the matrix
c(·) must satisfy the condition

c(t)c′(t) ≥ δIm, ∀t ∈ [0, T ], (4)

whereδ > 0 and Im ∈ Rm×m is the identity ma-
trix. Hereafter the symbol′ means the transposition.
According to general theory of guaranteed estimation
[Kurzhanski and Varaiya, 2014] let us give

Definition 1. The collectionXT (y) of state vectors
{x(T )} is said to be theinformational set if for any
x ∈ XT (y) there exists a functionv(·) satisfying(3)
and such that equality(2) holds.

Denote byC(t) the matrix (c(t)c′(t))−1. Under as-
sumption (4) we have the equalitiesv(t) = c′(t)w(t)+
C1(t)f(t) and‖v(·)‖2 = ‖c′(·)w(·)‖2 + ‖C1(·)f(·)‖2,
whereC1(t) = Ik−c′(t)C(t)c(t) is the orthogonal pro-
jection on the subspace kerc(t). Using (2), we may
rewrite inequality (3) as

∫ T

0

{

|y(t)−G(t)x(t)|2C(t) + |f(t)|2C1(t)

}

dt ≤ 1. (5)

From now on the symbol|x|2Q meansx′Qx.
It is easily seen thatx ∈ XT (y) iff there exists a func-

tion f(·) satisfying (5) and subjecting to the equation

ẋ(t) = A(t)x(t) +B(t)C1(t)f(t)
+B(t)c′(t)C(t)(y(t) −G(t)x(t))

(6)

with final conditionx(T ) = x. On the other hand, such
a function exists iff the minimum of the left-hand side
of inequality (5) is less or equal 1. Thus, using standard
optimization reasonings, we come to the conclusion.

Lemma 1. The informational set has the formXT (y)
=

{

x ∈ Rn : |x|2P (T ) − 2d′(T )x+ q(T ) ≤ 1
}

, where

parameters may be found from equations

Ṗ (t) = −P (t)A(t)−A′(t)P (t)− P (t)B(t)

×B′(t)P (t) + (G(t) + c(t)B′(t)P (t))′

×C(t)(G(t) + c(t)B′(t)P (t)), P (0) = 0;

(7)

ḋ(t) = −
(

A(t) + B(t)B′(t)P (t)
)′
d(t)

+(G(t) + c(t)B′(t)P (t))′C(t)(y(t)
+c(t)B′(t)d(t)), d(0) = 0;

(8)

q̇(t) =
∣

∣y(t)
∣

∣

2

C(t)
−
∣

∣B′(t)d(t)
∣

∣

2

C1(t)
,

q(0) = 0.
(9)

If the matrixP (t) is invertible on(0, T ], we can in-
troduce the valueŝx(t) = P−1(t)d(t) and h(t) =

q(t)−
∣

∣d(t)
∣

∣

2

P−1(t)
, which satisfy the equations

˙̂x(t) = A(t)x̂(t) +
(

c(t)B′(t) +G(t)P−1(t))′

×C(t)(y(t)−G(t)x̂(t)),
(10)

ḣ(t) =
∣

∣y(t)−G(t)x̂(t)
∣

∣

2

C(t)
. (11)

The value x̂(T ) is the center of bounded ellipsoid
XT (y).

3 Problem Formulation
Consider our observation process as a differential

game for Riccati equation (7). This may be described
as follows. LetB(t) = g(t)b(t) and uncertain matrices
b(·), c(·) in (1), (2), (4) are subjected to the constraints

b(t) ∈ B, c(t) ∈ C, (12)

whereB, C are compact sets in the spacesRk×k and
Rm×m, respectively. Condition (4) holds as before. At
any instantt, the matricesb, c in (12) can be chosen by
a 2-nd player (opponent) who tries to make the worse
quality of observation process. On the other hand, the
matrices

g(t) ∈ G1, G(t) ∈ G, (13)

whereG1, G are compact sets in the spacesRn×k and
Rm×n, respectively, can be chosen by a 1-st player (ob-
server) who tries to make the best quality of observa-
tion process. Both players evaluate the quality of ob-
servation by the terminal payoff

γ(T ) = |P−1(T )|, (14)

where|P | = max|x|≤1 |Px| is the Euclidean norm of
matrix P . The 1-st player tries to minimize the pay-
off, and his opponent tries to maximize. Let us ex-
plain the choice of payoff (14). This value is pro-
portional to the diameter of final informational set



XT (y) if P (T ) > 0. Indeed, the support function of
XT (y) is equal toρ(l|XT (y)) = maxx∈XT (y) l

′x =

l′x̂(T )+
√

1− h(T )|l|P−1(T ). Therefore, the diameter

maxx,y∈XT (y) |x− y| equals2
√

(1− h(T ))|P−1(T )|.
As a rule, the valueh(T ) is selected by the 2-nd player
who supposesh(T ) = 0 to maximize the diameter.
Note thatγ(T ) = ∞ if the matrixP (T ) is singular.

4 Optimization of Riccati Equation with Time-
Invariant Parameters

Let all the matrices in relations (1), (2), (4), and
(12), (13) be time-invariant. Consider the low value
γ∗ = maxb,cming,G γ(T ) of the game and its upper
value γ∗ = ming,G maxb,c γ(T ). Always we have
γ∗ ≥ γ∗, and the strong inequalityγ∗ > γ∗ may
be realised. From now on, we use the standard nota-
tion from Matlab, where[A1, . . . , Ak] means the row-
concatenation of matrices of appropriate dimensions
(sometimes, the comma is replaced by the blank), and
[A1; . . . ;Ak] means the column-concatenation.

Example 1. Consider a two-dimensional system with
A = 0, G = I2, c = [O2, I2], whereI2 ∈ R2×2

is the identity matrix, andO2 is the zero matrix.
Besides, the setB =

{[

[
√
a, 0; 0,

√
1− a], O2

]

:

0 ≤ a ≤ 1
}

and the setG1 =
{

[z, 1 − z] :

0 ≤ z ≤ 1
}

. The solution of Riccati is equal to
the diagonal matrix[p1(t), 0; 0, p2(t)], wherep1(t) =
tanh(

√
2azt)/(

√
2az), p2(t) = tanh(

√
1− a(1 −

z)t)/(
√
1− a(1 − z)). For T = 5 we haveγ∗ =

0.5068, γ∗ = 0.3751.

Let us solve our game in the class ‘counterstrate-
gy/strategy’, when the 1-st player may use any func-
tionsg(b, c), G(b, c). In this case, the game has a sad-
dle point (see [Krasovskii and Subbotin, 1988; Flem-
ing, Soner, 2006]) and the value of game

γ = max
b,c

min
g,G

γ(T ) = min
g(·,·),G(·,·)

max
b,c

γ(T ) (15)

that is equal toγ∗. There is a simpler case of the game
under

Assumption 1. Let constraints(12), (13) satisfy the
conditions: there are matricesb∗ ∈ B, c∗ ∈ C, such
that bb′ ≥ b∗b∗

′

, cc′ ≥ c∗c∗
′

, ∀b ∈ B, ∀c ∈
C, and gbc′ = 0, ∀g ∈ G1, ∀b ∈ B, ∀c ∈ C.
Hereafter the inequalityA ≥ B means|x|2A ≥ |x|2B,
for all x, whereA, B are square simmetrical matrices.

Theorem 1. Under assumption1 the optimization is
fulfilled on g, G, and the value of the game equals
γ = γ∗ = ming,G |P−1(T )|, where matricesb∗, c∗ are
substituted in equation(7).

Now consider stationary solutions of Riccati equation
(7). Such solutions arise under very long time of obser-
vation. We make

Assumption 2. The systeṁx = Ax + gbC1f, y =
Gx + cv, where A = A − gbc′CG (see (6)),
is completely observable and completely control-
lable, i.e. rank

[

gbC1,AgbC1, . . . ,An−1gbC1
]

= n,
rank

[

G;GA; . . . ;GA
n−1

]

= n, cc′ > 0, ∀g ∈ G1,
∀b ∈ B, ∀G ∈ G, ∀c ∈ C.

It is known [Liptser and Shiryayev, 2001] that under
assumption 2 there exists a unique positive-definite so-
lution of stationary Riccati equation

−A
′P − PA+G′CG− PgbC1b′g′P = 0. (16)

Condition (16) may be considered as an equality con-
dition for minimax problem (15). Consider

Example 2. Let A = [0, 1; 0, 0]. The setsG1 =
{

[1, z; z, 1] : 0 ≤ z ≤ 1
}

, B =
{[

[
√
1− a, 0; 0,

2
√
a], O2] : 0.1 ≤ a ≤ 1

}

, G =
{

[1 − r 0; 0 4r] :

0 ≤ r ≤ 0.9
}

, C =
{[

O2, [
√
1− k 0; 0

√
k]
]

: 0.1 ≤
k ≤ 0.9

}

. The assumption2 holds, but assumption1
does not hold. It is required to find the value of the
game and optimal counterstrategiesr∗(a, k), z∗(a, k)
delivering the minimum in (15) and optimal strategies
a∗, k∗. The value of the game is approximately equals
4.3585. It is reached ata∗ = 0.66, k∗ = 0.884. The
optimal functionsr∗, z∗ are shown on Fig. 1 and 2.
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Figure 1. Optimal counterstrategyr∗.

The program for this example uses a grid on uncertain
parameters with the stepδ = 0.05.

5 Common Case
Unfortunately, Riccati equation (7) does not satisfy

the Lipschitz condition. Nevertheless, we can over-
come this difficulty at least in two ways. At first,
we transform the Riccati equation by fractional de-
composition and writeP (t) = M(t)N−1(t), where
M(·), N(·) are matrix differentiable functions. Us-
ing the relation Ṅ−1 = −N−1ṄN−1 and sub-
stituting M(t)N−1(t) into (7) (see also (16)), we



0
1

0.2

0.8

0.4

1

 z

0.6

0.6 0.8

 k

0.8

0.6

 a

0.4

1

0.4
0.2

0.2
0 0

Figure 2. Optimal counterstrategyz∗.

obtain the equalityṀ(t) − M(t)N−1(t)Ṅ(t) =
−A

′(t)M(t) + G′(t)C(t)G(t)N(t) − M(t)N−1(t)
×
(

g(t)b(t)C1(t)b′(t)g′(t)M(t) + A(t)N(t)
)

, which
may be satisfied by two solutions of the linear matrix
equations

Ṁ(t) = −A
′(t)M(t) +G′(t)C(t)G(t)N(t),

Ṅ(t) = g(t)b(t)C1(t)b′(t)g′(t)M(t)

+A(t)N(t).

(17)

The initial conditions for equations (17) may be chosen
asM0 = 0, N0 = In.
From now on, we accept the analog of assumption 2

for non-stationary systems.

Assumption 3. The matrixPB(τ, t) =
∫ t

τ X(t, r)g(r)
×b(r)C1(r)b′(r)g′(r)X′(t, r)dr > 0, ∀τ, t, 0 ≤ τ <
t ≤ T, for all measurable functionsb(r) ∈ B, c(r) ∈
C, G(r) ∈ G, and g(r) ∈ G1. HereafterX(t, r)
is the fundamental matrix, for which∂X(t, r)/∂t =
A(t)X(t, r), X(r, r) = In. Besides, the matrix
PG(τ, t) =

∫ t

τ
X

′(r, t)G′(r)C(r)G(r)X(r, t)dr >
0, ∀τ, t, 0 ≤ τ < t ≤ T, for all measurable parameter
functions.

Under assumption 3, it follows from [Liptser and
Shiryayev, 2001] that the matrixP (t) is nonsingular for
anyt ∈ (0, T ]. Moreover, due to the compactness, the
nonsingularity will be uniform on any interval[t0, T ],
t0 > 0, with respect to all measurable parameter func-
tions. The same may be told about matricesM(t) and
N(t).
Thus, our differential game is reduced to the game

with linear matrix equations (17). Let us introduce the
designationsu = {g,G} andv = {b, c}. These con-
trol parameters are contained in compact sets:u ∈
U = G1 × G, v ∈ V = B × C. The payoff
ω(M(T ), N(T )) = γ(T ) = |N(T )M−1(T )| of the
game is a continuous function of the final state. The ini-
tial state is known. Any functionsu(t,M,N,v) ∈ U

of t, the state{M,N}, and the parameterv satisfying
the constraints, will be consider for the strategies of

the 1-st player who tries to minimizeω(M(T ), N(T )).
The strategies of the 2-nd player, who tries to maximize
ω(M(T ), N(T )), are any functionsv(t,M,N) ∈ V.
The controls of the 1-st player are said to be counter-
strategies, [Krasovskii and Subbotin, 1988]. The solu-
tion of the (17) is defined step-by-step with the help
of piecewise-constant controls as in [Krasovskii and
Subbotin, 1988], [Subbotin, 1999, p. 7]. In the same
works, a concept of the value of the game in the class
‘counterstrategy/strategy’ is explained in detail. The
game has the saddle point and the valuec(t0,M0, N0),
wheret0 ∈ [0, T ], if the game begins from the position
(t0,M0, N0).
In our problem, one needs to find a saddle point (a

value of the game)

ω = c(0,M0, N0) (18)

and corresponding optimal strategiesu∗, v∗. For prob-
lem’s solution one need to build a functionc(t,M,N)
giving the value of the game under different initial po-
sitions(t,M,N). Under assumptions 3 we may sup-
pose that there exist constantsα, β, such that0 < α ≤
P (t), P−1(t) ≤ β for all t ∈ [t0, T ], t0 > 0, and for
all control parameters. At the final instant the boundary
conditionc(T,M,N) = ω(M,N) must hold.
As in section 4, the game become simpler under the

following

Assumption 4. Let the compact setsB(t), C(t) may
depend on time and let there exist the matricesb∗(t) ∈
B(t), c∗(t) ∈ C(t), such thatb(t)b′(t) ≥ b∗(t)b∗

′

(t),
c(t)c′(t) ≥ c∗(t)c∗

′

(t), ∀b(t) ∈ B(t), ∀c(t) ∈ C(t).
Besides, the relationg(t)b(t)c′(t) = 0 must hold.

Under assumption 4 the game is reduced to a problem
of optimal control.

5.1 HJBI Equation
For our case, in [Subbotin, 1999, Theorem 9.1] it

was proved that the value of the game equalsω =
c(0,M0, N0), where the functionc : [0, T ]× Rn×n ×
Rn×n → R satisfies (in corresponding minimax for-
malization) the equation

∂c(t,M,N)/∂t+H(t,M,N,Dc) = 0 (19)

with boundary conditionc(T,M,N) = ω(M,N). In
equation (19) the symbolDc means the generalized
gradient of functionc(t,M,N) with respect to vari-
ablesM,N , and the HamiltonianH is defined by the
following way

H(t,M,N,Φ,Ψ) = max
v∈V

min
u∈U

h(t,u,v,M,N,

Φ,Ψ),
(20)



where h(t,u,v,M,N,Φ,Ψ) =
〈

Φ,−A
′(t)M +

G′CGN
〉

+
〈

Ψ, gbC1b′g′M + A(t)N〉. Here the in-
ner product〈A,B〉 means traceA′B. If the function
c(t,M,N) has been built, the optimal strategies of 1-st
and 2-nd players are defined as selectors of inclusions

u∗(t,M,N,v) ∈ Argmin
u∈U

h(t,u,v,M,N,

Dc(t,M,N)), v
∗(t,M,N) ∈ Argmax

v∈V

min
u∈U

h(t,

u,v,M,N,Dc(t,M,N)).

It is known that the solution of (19) in minimax sense
coincides with viscosity solution (see [Subbotin, 1999;
Fleming, Soner, 2006]). Note that both the solutions
are unique.

6 A Numerical Solution
A numerical procedure can be built on the base of

[Souganidis, 1985; Souganidis, 1999; Taras’ev et. al.,
2006]. Here we do not perform a decomposition and
consider initial equation (7) on the interval[t0, T ],
t0 > 0. Denote byF (t, P,u,v) the right-hand side
of this equation. Let us establish some properties of
solutions of equation (7). ByKn

α,β we denote the seg-
ment of nonnegative-defined and simmetrical matrices
{

A : 0 ≤ αIn ≤ A ≤ βIn
}

=
{

A : α ≤ |A| ≤ β
}

.
The matrixA(t) will be considered Lipschitzean int.

Lemma 2. Let assumption3 hold. Then solutions of
equation(7), the mappingsF (t, P,u,v) andω(P ) =
|P−1|, possess the following properties.

R1. For any instantt0 ∈ (0, T ) there exist positive con-
stantsα, β that do not depend on control parame-
ters and such thatP (t) ∈ Kn

α,β , ∀t ∈ [t0, T ].
R2. The functionF (t, P,u,v) may be continued on the

set [0, T ] × Rn×n × U × V in such a way that
it is bounded and the uniform Lipschitz condition
|F (t1, P1,u,v) − F (t2, P2,u,v)| ≤ C1

(

|P1 −
P2|+ |t1 − t2|

)

holds.
R3. The functionω(P ), P ∈ Kn

α,β , may be continued
on the spaceRn×n in such a way that it is bounded
and the Lipschitz condition|ω(P1) − ω(P2)| ≤
C2|P1 − P2| holds.

The lemma may be proved with the help of the Kirsz-
braun theorem (see [Federer, 1969, Theorem 2.10.43])
about the continuation of Lipschitzean maps.
Henceforth, we believe that the mappingsF andω

are continued due to lemma 2. The Hamiltonian is
now defined asH(t, P, S) = maxv∈Vminu∈U h(t,u,
v, P, S), whereh(t,u,v, P, S) =

〈

S, F (t, P,u,v)
〉

.
The functionc : [0, T ] × Rn×n → R (the value of
the game) satisfies in corresponding formalization the
HJBI equation

∂c(t, P )/∂t+H(t, P,Dc) = 0. (21)

Here the symbolDc ∈ Rn×n means the gradient of
c(t, P ) and is the matrix. For approximation ofc(t, P ),
we consider the partition∆ = {0 = t0 < t1 < · · · <
tN(∆)+1 = T } of the interval[0, T ]. The diameter
maxi |ti+1 − ti| of the partition is denoted by|∆|. De-
fine the functionc∆ : [0, T ]×Rn×n → R as

c∆(T, P ) = ω(P ) on Rn×n,

c∆(t, P ) = max
v∈V

min
u∈U

{

c∆(ti+1, P

+(ti+1 − t)F (ti+1, P,u,v)
}

,

if t ∈ [ti, ti+1), and i ∈ 0 : N(∆).

(22)

Using [Souganidis, 1999, Theorem 4.4], we obtain

Theorem 2. Under |∆| → 0, the function(22) con-
verges toc(t, P ) locally uniformly on[0, T ] × Rn×n.
The functionc(t, P ) is the unique solution of equation
(21) in minimax or viscosity sense. Besides, there exists
a constantK(C2, ||ω||, ||ωP ||), such that|c∆(t, P ) −
c(t, P )| ≤ K|∆|1/2 for all (t, P ) ∈ [0, T ] × Rn×n.
Here || · || is thesup-norm of corresponding function.

We can suggest the following numerical algorithm.

1. Choose a finite set (a grid)N =
{

kPj

}

, k ∈ 0 :

N1, j ∈ 1 : N2, where
{

Pj

}

is a collection of
positive-definite matrices of small norm. The set
must be contained in the segmentKn

0,β , which uni-
formly covers the attainability domains of the Ric-
cati equation.

2. Select a partition∆ = {0 = t0 < t1 < · · · <
tN+1 = T } of [0, T ].

3. Form and remember the functionωN(P ) =
maxv∈Vminu∈U ω

(

P + (tN+1 − tN )F (tN+1, P,

u,v)
)

and corresponding optimal controlsu∗
N and

v
∗
N (u).

4. On subsequent steps the grid function is formed:
ωi(P ) = maxv∈V minu∈U ωi+1

(

P + (ti+1 −
ti)F (ti+1, P,u,v)

)

and corresponding optimal
controlsu∗

i andv∗
i (u). If the valueP + (ti+1 −

ti)F (ti+1, P,u,v) does not lie in the grid, then
this value is changed for the nearest element from
N .

5. The valueω0(P ) gives an approximate value of the
game.

6.1 Examples
1. Consider the system of example 2 and suppose that
P0 = 0, T = 10. Equation (21) is of the form

∂c(t, P )/∂t+
〈

Dc(t, P ), AP + PA′
〉

+max
a,k

min
r,z

〈

Dc(t, P ), G2C − Pg2bb′P
〉

.

By method based on above algorithm, we get the value
ω0(0) = 4.34 that close to the value in example 2. Note



that the solutions of the Riccati equation are fast stabi-
lized here to the steady-state solution under all control
parameters.
2. Let us optimize the estimation for the two-di-

mensional oscillating system

ẋ(t) = Ax(t) + g(t)b(t)v(t),

y(t) = G(t)x(t) + c(t)v(t),

on the interval[0, T ], whereT = 2π,A = [0, 1;−1, 0].
The control parameters are:G(t) = [r(t) 0; 0 1− r(t)]
with 0 ≤ r(t) ≤ 1; b(t) =

[

[0, 0; 0, a(t)], O2

]

, g(t) =
[0, 0; 0, z(t)], where a(t), z(t) ∈ [−1, 1]; c(t) =
[O2, c1(t)] with c1(t)c

′
1(t) ≥ I2. Here the case when

the assumption 4 holds, i.e. the 2-nd player chooses
c1(t)c

′
1(t) = I2 anda(t) ≡ 0. Therefore, we obtain

the Riccati equation in the forṁP (t) = −A′P (t) −
P (t)A+G2(t). It has the explicit solution, and we have

P−1(T ) =
(

∫ T

0 X(T − t)G2(t)X′(T − t)dt
)−1

,

where the matrixX(t) = [cos t, sin t;− sin t, cos t].
Here the functional|P−1(T )| is concave in variable
functionr(·). Hence, the approximate optimal solution
is a piecewise constant function with values in{0, 1}.
In the class of constant functions the minimal value of
the functional equalsπ−1.

7 Conclusion
The problem of observations’ control for non-sta-

tionary linear systems is considered. The quality of ob-
servation is measured by the diameter of informational
set at the end of time interval. The problem is reduced
to a differential game for the Riccati equations, where
the first part of parameters is chosen by the 1-st player
(an observer) and the second part is chosen by the 2-nd
player (an opponent) who tries to worsen the quality
of observation. In the common case, there are a sad-
dle point in the class ‘counterstrategy/strategy’. The
value of the game may be found by integration of cor-
responding HJBI equation, the solution of which is un-
derstood in a generalized sense. The optimal strategies
are also defined due to this solution. The numerical ap-
proximation is specified and the estimation of the rate
of convergence is given for the approximating scheme.
Particular cases of the equations with constant coeffi-
cients are considered, and the solutions for steady-state
regimes of the Riccati equation are given. The exam-
ples are considered as well.
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