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Abstract
We investigate the synchronization dynamics of two

coupled noise-driven FitzHugh-Nagumo systems, rep-
resenting two neural populations. For certain choices
of the noise intensities and coupling strength, we find
cooperative stochastic dynamics such as frequency
synchronization and phase synchronization, where the
degree of synchronization can be quantified by the ra-
tio of the interspike interval of the two excitable neu-
ral populations and the phase synchronization index,
respectively. The stochastic synchronization can be
either enhanced or suppressed by local time-delayed
feedback control, depending upon the delay time and
the coupling strength. The control depends crucially
upon the coupling scheme of the control force, i.e.,
whether the control force is generated from the activa-
tor or inhibitor signal, and applied to either component.
For inhibitor self-coupling, synchronization is most
strongly enhanced, whereas for activator self-coupling
there exist distinct values of the delay time where
the synchronization is strongly suppressed even in the
strong synchronization regime. For cross-coupling
strongly modulated behavior is found.
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1 Introduction
The control of unstable or irregular states of nonlin-

ear dynamic systems has many applications in differ-
ent fields of physics, chemistry, biology, and medicine
(Schöll and Schuster, 2008). A particularly simple
and efficient control scheme is time-delayed feedback
(Pyragas, 1992) which occurs naturally in a number
of biological systems including neural networks where
both propagation delays and local neurovascular cou-
plings lead to time delays (Haken, 2006; Wilson, 1999;
Gerstner and Kistler, 2002). Moreover, time-delayed
feedback loops might be deliberately implemented to
control neural disturbances, e.g., to suppress unde-
sired synchrony of firing neurons in Parkinson’s dis-

ease or epilepsy (Schiffet al., 1994; Rosenblum and
Pikovsky, 2004a; Popovychet al., 2005). Here we
study coupled neural systems subject to noise and time-
delayed feedback (Hauschildtet al., 2006; Hövelet
al., 2009; Schöllet al., 2009a; Schöll et al., 2009b).
In particular we focus upon the question how stochas-
tic synchronization of noise-induced oscillations of two
coupled neural populations can be controlled by time-
delayed feedback, and how robust this is with respect
to different coupling schemes of the control force.
Time-delayed feedback control of noise-induced os-

cillations was demonstrated in a single excitable sys-
tem (Jansonet al., 2004; Balanovet al., 2004; Prager
et al., 2007; Pototsky and Janson, 2008). The simplest
network configuration displaying features of neural in-
teraction consists of two coupled excitable systems.
In order to grasp the complicated interaction between

billions of neurons in large neural networks, those
are often lumped into groups of neural populations
each of which can be represented as an effective ex-
citable element that is mutually coupled to the other
elements (Rosenblum and Pikovsky, 2004b; Popovych
et al., 2005). In this sense the simplest model which
may reveal features of interacting neurons consists of
two coupled neural oscillators. Each of these will be
represented by a simplified FitzHugh-Nagumo (FHN)
system (FitzHugh, 1960; Nagumoet al., 1962), which
is often used as a generic model for neurons, or more
generally, excitable systems (Lindneret al., 2004).
This paper is organized as follow: We introduce the

model equations and the feedback scheme in Sec. 2.
Sec. 3 is devoted to two measures of the stochastic syn-
chronization. These are investigated for different cou-
pling schemes of the feedback in Sec. 4. Finally, we
conlcude in Sec. 5.

2 Model Equations
Neurons are excitable units which can emit spikes or

bursts of electrical signals,i.e., the system rests in a sta-
ble steady state, but after it is excited beyond a thresh-
old, it emits a pulse. In the following, we consider elec-
trically coupled neurons modelled by the FitzHugh-



Figure 1. Schematic diagram of two coupled FitzHugh-Nagumo

systems with time-delayed feedback applied to the first subsystem.

K andτ denote the feedback gain and time delay, respectively, and

C is the coupling strength.

Nagumo system in the excitable regime:

ε1

du1

dt
= f (u1, v1) + C (u2 − u1) (1a)

dv1

dt
= g (u1, v1) + D1ξ1 (1b)

ε2

du2

dt
= f (u2, v2) + C (u1 − u2) (2a)

dv2

dt
= g (u2, v2) + D2ξ2 (2b)

with f (ui, vi) = ui−u3

i /3−vi andg (ui, vi) = ui+a
(i = 1, 2). The fast activator variablesui (i = 1, 2)
refer to the transmembrane voltage, and the slow in-
hibitor variablesvi are related to the electrical conduc-
tance of the relevant ion currents. The parametera
is the excitability parameter. For the purposes of this
paper,a is fixed at1.05, such that there are no au-
tonomous oscillations (excitable regime).C is the dif-
fusive coupling strength betweenu1 andu2. To intro-
duce different time scales for both systems,ε1 is set to
0.005 andε2 is set to0.1. Both systems, when uncou-
pled, are driven entirely by independent noise sources,
which in the above equations are represented byξi

(i = 1, 2, Gaussian white noise with zero mean and
unity variance).Di is the noise intensity, and for the
purposes of this paper,D2 will be held fixed at0.09
(Hauschildtet al., 2006).
The control force which we apply only to the first

of the neural populations as schematically depicted
in Fig. 1 is known as time-delay autosynchroniza-
tion (TDAS) or time-delayed feedback control. This
method was initially introduced by Pyragas (Pyragas,
1992) for controlling periodic orbits in chaotic systems.
It has been effective in a variety of experimental appli-
cations at controlling oscillatory behavior and can be
easily implemented in many analog devices (Schöll and
Schuster, 2008). TDAS constructs a feedbackF from
the difference between the current value of a control
signalw and the value for that quantity at timet − τ .

The difference is then multiplied by the gain coefficient
K

F (t) = K[w(t − τ) − w(t)], (3)

wherew determines which components of the system
enter the feedback as will be discussed in the following.
The variablew in the control force can be either the

activatoru1 or the inhibitorv1. Also, the control force
can either be applied to the activator or the inhibitor
differential equation. These possibilities lead to two
self-coupling schemes (uu andvv) where either the ac-
tivator is coupled to the activator equation or the in-
hibitor is coupled to the inhibitor equation, and two
cross-coupling schemes (uv andvu). Thus, Eqs. (1)
of the first subsystem can be rewritten including time-
delayed feedback as

(

ε1
du1

dt
dv1

dt

)

=

(

f (u1, v1) + C (u2 − u1)
g (u1, v1) + D1ξ1

)

(4)

+K

(

Auu Auv

Avu Avv

) (

u1(t − τ) − u1(t)
v1(t − τ) − v1(t)

)

,

where the coupling matrix elementsAij with i, j ∈
{u, v} define the specific coupling scheme.
Next, we will discuss cooperative stochastic dynamics

resulting in frequency synchronization and phase syn-
chronization in the following Sections.

3 Measures of Synchronization
A measure of frequency synchronization is the ratio of

the interspike intervals (ISI) of the two neural popula-
tions (Hauschildtet al., 2006; Hövelet al., 2009). The
respective average ISI of each neural population is de-
noted by〈T1〉 and〈T2〉. The ratio〈T1〉/〈T2〉 compares
the average time scales of both systems, where unity ra-
tio describes two systems spiking at the same average
frequency. It is for this reason that the ISI ratio is often
considered as a measure of frequency synchronization.
It does not contain information about the phase of syn-
chronization, and a given ISI ratio can also result from
different ISI distributions.
In order to account for the phase difference between

two systems, one can define a phase (Pikovskyet al.,
1996; Pikovskyet al., 2001; Hauschildtet al., 2006)

ϕ(t) = 2π
t − ti−1

ti − ti−1

+ 2π(i − 1) (5)

wherei = 1, 2, . . . . ti denotes the time of theith spike.
The phase difference between two consecutive spikes is
2π. The phase difference of 1:1 synchronization is

∆ϕ(t) = |ϕ1(t) − ϕ2(t)| , (6)

whereϕ1(t) andϕ2(t) are the phases of the first and
second system, respectively. Two systems that are
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Figure 2. (Color online) Panels (a) and (b) show the ratio of inter-

spike intervals〈T1〉/〈T2〉 and the phase synchronization indexγ
of the two subsystems as color code in dependence on the coupling

strengthC and noise intensityD1, respectively. No control is ap-

plied to the system. The dots mark the parameter choice for different

synchronization regimes used in the following. Other parameters:

ε1 = 0.005, ε2 = 0.1, a = 1.05, andD2 = 0.09.

phase synchronized at a given time satisfy∆ϕ = 0.
Finally, the overall time-averaged phase synchroniza-
tion of two systems can be quantified using the syn-
chronization index

γ =
√

〈cos∆ϕ(t)〉2 + 〈sin ∆ϕ(t)〉2. (7)

A value of 0 indicates no synchronization, while a
value of unity indicates perfect synchronization.
Figure 2 depicts both measures for stochastic synchro-

nization in the(D1, C) plane, both exhibiting very sim-
ilar behavior. Panel (a) refers to the frequency synchro-
nization characterized by the ratio of the average ISIs
〈T1〉/〈T2〉 and panel (b) shows the phase synchroniza-
tion indexγ. The green dots mark parameter values
used in Sec. 4. Note that both panels share the same
color code. For a small value ofD1 and large coupling
strength, the two subsystems display well synchronized
behavior,〈T1〉/〈T2〉 ≈ 1 andγ ≈ 1. The timescales in
the interacting systems adjust themselves to1 : 1 syn-
chronization. On average, they show the same number
of spikes and the two subsystems are in-phase which is
indicated by yellow color. The two subsystems are less
synchronized in the dark blue and black regions.
In the following we show the ratio of the average

interspike interval〈T1〉/〈T2〉 and the phase synchro-
nization indexγ which are color coded in the(τ, K)
plane for fixed combinations ofD1 andC. For each
coupling scheme of time-delayed feedback control
(cross-coupling schemesuv andvu and self-coupling
schemesuu andvv) we present a selection of(D1, C)
values. In all cases, only one element of the coupling
matrix A is equal to unity and all other elements are
zero.

4 Coupling Schemes
After the introduction of the system and the cou-

pling schemes, we will present results on frequency and
phase synchronization in the following. We consider16

different combinations of the noise intensityD1 and the
coupling strengthC which are marked as green dots in
Fig. 2. The ordering of panels in Figs. 3 to 10 is the fol-
lowing: The rows correspond to fixed coupling strength
chosen asC = 0.01, 0.21, 0.41, and0.61 from bottom
to top. The columns in each figure are calculated for
constant noise intensityD1 = 0.01, 0.34, 0.67, and1.0
from left to right.

4.1 Frequency Synchronization
Figures 3 to 6 show frequency synchronization mea-

sured by the ratio of average interspike intervals
〈T1〉/〈T2〉 calculated from the summarized activator
variableuΣ = u1 + u2 as color code in dependence
on the feedback gainK and the time delayτ . The
system’s parameters are fixed in each panel as de-
scribed above. Figures 3 and 6 correspond to self-
coupling (uu- andvv-coupling) and Figs. 4 and 5 de-
pict the cross-coupling schemes (uv- andvu-coupling).
The dynamics in the white regions is outside the ex-
citable regime and does not show noise-induced spik-
ing, but rather the system exhibits large-amplitude self-
sustained oscillations.
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Figure 3. uu-coupling: Ratio of average interspike intervals

〈T1〉/〈T2〉 as color code. Rows and columns correspond to con-

stant coupling strengthC and noise intensityD1, respectively, as

marked in Fig. 2 as green dots, and specified in the text. Otherpa-

rameters as in Fig. 2.

One can see that appropriate tuning of the control
parameters leads to enhanced or deteriorated synchro-
nization displayed by bright yellow and dark blue ar-
eas, respectively. In each figure, all panels show qual-
itatively similar features like a modulation of the ratio
〈T1〉/〈T2〉 whose range between maximum and min-
imum depends onD1 and C. Comparing the rows,
the systems are less (more strongly) synchronized for
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Figure 4. uv-coupling: Ratio of average interspike intervals

〈T1〉/〈T2〉 as color code. Rows and columns correspond to con-

stant coupling strengthC and noise intensityD1, respectively.

Other parameters as in Fig. 2.
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Figure 5. vu-coupling: Ratio of average interspike intervals

〈T1〉/〈T2〉 as color code. Rows and columns correspond to con-

stant coupling strengthC and noise intensityD1, respectively.

Other parameters as in Fig. 2.

small (large) values ofC indicated by dark blue (yel-
low) color. As the noise intensityD1 increases, the
dynamics of the coupled subsystems is more and more
noise-dominated and the dependence on the time delay
τ becomes less pronounced.

Note the symmetry in the cross-coupling schemes
shown as Figs. 4 and 5 betweenK and its negative
value−K for the inverse cross-coupling. The reason
is that enhancing the activator yields a similar effects
on the dynamics as diminishing the inhibitor variable.
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Figure 6. vv-coupling: Ratio of average interspike intervals

〈T1〉/〈T2〉 as color code. Rows and columns correspond to con-

stant coupling strengthC and noise intensityD1, respectively.

Other parameters as in Fig. 2.

4.2 Phase Synchronization
Figures 7 to 10 depict the phase synchronization index

γ as color code depending on the control parameters
K andτ for uu-, uv-, vu-, andvv-coupling, respec-
tively. The noise intensityD1 and coupling strengthC
are fixed for each panel as described in Sec. 4.1.
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Figure 7. uu-coupling: Phase synchronization indexγ. Noise in-

tensityD1 and coupling strengthC chosen as described in Sec. 4.1.

Other parameters as in Fig. 2.

Comparing Figs. 7 to 10 with the respective plots for
frequency synchronization, i.e., Figs. 3 to 6, one can
see that both types of synchronization coincide qual-
itatively, but the phase synchronization index is more



sensitive to the modulation features. Similar to the case
of frequency synchronization, time delayed feedback
can lead to either enhancement or suppression of phase
synchronization depending on the specific choice of the
feedback gainK and time delayτ indicated by yellow
and dark blue regions. In general, these effects become
less sensitive on the time delay asD1 increases. For
larger values ofC, the two subsystems show enhanced
phase synchronization.
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Figure 8. uv-coupling: Phase synchronization indexγ. Noise in-

tensityD1 and coupling strengthC chosen as described in Sec. 4.1.

Other parameters as in Fig. 2.
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Figure 9. vu-coupling: Phase synchronization indexγ. Noise in-

tensityD1 and coupling strengthC chosen as described in Sec. 4.1.

Other parameters as in Fig. 2.
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Figure 10. vv-coupling: Phase synchronization indexγ. Noise in-

tensityD1 and coupling strengthC chosen as described in Sec. 4.1.

Other parameters as in Fig. 2.

5 Conclusion
In summary, we have shown that stochastic synchro-

nization in two coupled neural populations can be tuned
by local time-delayed feedback control of one popula-
tion. Synchronization can be either enhanced or sup-
pressed, depending upon the delay time and the cou-
pling strength. The control dependents crucially upon
the coupling scheme of the control force. For inhibitor
self-coupling (vv) synchronization is most strongly en-
hanced, whereas for activator self-coupling (uu) there
exist distinct values ofτ where the synchronization is
strongly suppressed even in the strong synchronization
regime. For cross-coupling (uv, vu) there is mixed be-
havior, and both schemes exhibit a strong symmetry
with respect to inverting the sign ofK. These obser-
vations might be important in the context of the delib-
erate application of control with the aim of suppress-
ing synchronization, e.g. as therapeutic measures for
Parkinson’s disease.
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