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Abstract
A single impulsive controller is designed for the effi-

cient stabilization of complex dynamical networks with
undirected strongly connected topology. In the mod-
eling of the dynamical network, impulsive effects are
considered in the information exchanging process of
two connected nodes. The convergence rate of the sta-
bilization process is meanwhile estimated together with
the convergence analysis. A numerical example with
small-world coupling is given to illustrate the derived
theoretical results.
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1 Introduction
In the past decade, there has been an increasing

interest in understanding the collective behavior of
networked systems which are formed by local inter-
connections of small subsystems [Arenas et al., 2008;
Wang and Chen, 2002; Strogatz, 2001]. Synchroniza-
tion of complex dynamical network, which means that
all of the network nodes agree upon certain dynam-
ical trajectory depending on their initial conditions,
intrinsic system dynamics and network structure, has
been one of the most interesting collective behavior
for networked systems [Zhou and Kurths, 2006; Lu
et al., 2010; Cao et al., 2008; Lu and Chen, 2006; Be-
lykh et al., 2006]. This is partly because synchroniza-
tion behavior arises ubiquitously in biological systems
and physical systems, and also its wide applications in
the fields of parallel image processing [Krinsky et al.,
1991], pattern storage and retrieval [Hoppensteadt and
Izhikevich, 2000] and secure communication [VanWig-
geren and Roy, 1998].
For many real-world networks, the transmitted signal

between two connected nodes is often subject to instan-
taneous perturbations and experience abrupt change

at certain instants which may be caused by switch-
ing phenomenon, frequency change or other sudden
noise, that is, do exhibit impulsive effects [Guan et al.,
2005; Bainov and Simeonov, 1989; Chen and Zheng,
2009]. Such systems can be described by impulsive
differential equations which have been used success-
fully in modeling many practical problems that arise in
the fields of natural sciences and technology [Bainov
and Simeonov, 1989]. Some interesting results about
synchronization of impulsive networks and stability of
impulsive systems have been obtained in [Guan et al.,
2005; Liu et al., 2005; Zhou et al., 2007; Zhang et al.,
2006]. Synchronization of the dynamical networks
without external force is realized by utilizing the inter-
connections between the nodes [Lu et al., 2010; Lu and
Ho, 2010]. The final self-synchronized state, which de-
pends not only on the network structure but also on the
initial values, and the intrinsic dynamical behavior of
each single node, is very difficult to predict. However,
there is a strong requirement for many physical and bi-
ological dynamical networks to regulate the behavior of
large ensembles of interacting units by external forces
[Mazenc et al., 2008]. Hence, it is desirable and impor-
tant to investigate the problem of stabilization of dy-
namical networks via controllers.
Impulsive controllers have shown its efficiency for the

stabilization of dynamical networks [Guan et al., 2010;
Liu et al., 2005]. However, in most of the previous re-
sults, impulsive controllers should be added to each of
the nodes in the networks, which would make the im-
plementation of the controllers very expensive and dif-
ficult. By utilizing the impulsive coupling between the
nodes, a single impulsive controller, which is easy and
cheap to implement in practice, is designed to stabilize
the dynamical networks. As usual, strongly connected
dynamical network with undirected coupling is studied.
The concept of “average impulsive interval” [Lu et al.,
2010] is used to describe wider range of impulsive sig-
nals and to make the obtained results less conservative.
The convergence rate of the impulsively controlled dy-
namical network is estimated. Finally, a numerical ex-



ample with small-world structure is given to illustrate
the efficiency of the designed contoller.
Notations : The standard notations will be used in

this paper. Throughout this paper, for real symmetric
matrices X and Y , the notation X ≤ Y (respectively,
X < Y ) means that the matrix X−Y is negative semi-
definite (respectively, negative definite); In is the iden-
tity matrix of order n, and I is an identity matrix with
compatible dimensions; we use λmin(·) and λmax(·) to
denote the minimum and maximum eigenvalue of a real
symmetric matrix, respectively; the notation R denotes
the set of real numbers; Rn×n are n× n real matrices;
the superscript “T” represents the transpose; diag{· · · }
stands for a block-diagonal matrix; matrices, if not ex-
plicitly stated, are assumed to have compatible dimen-
sions.

2 Model description and some preliminaries
We consider the following impulsive dynamical net-

work [Lu et al., 2010]:





ẋi(t) = Cxi(t) + Bf(xi(t)) + c
N∑

j=1

aijΓxj(t),

t ≥ 0, t 6= tk, k ∈ N,
xj(t+k ) − xi(t+k ) = µ · (xj(t−k )− xi(t−k )),

for (i, j) satisfying aij > 0,

(1)

where xi(t) = Rn is the state vector of the i-th node
at time t; C ∈ Rn×n, B ∈ Rn×n; f(xi(t)) =
[f1(xi1(t)), f2(xi2(t)), ..., fn(xin(t))]T ; The configu-
ration coupling matrix A = (aij)N×N is defined as
follows: if there is a connection between node i and
node j (i 6= j), then aij = aji > 0; otherwise,
aij = aji = 0; and the diagonal elements are defined
as aii = −∑N

j=1,j 6=i aij . According to the above def-
inition, the configuration coupling matrix is symmet-
ric, which implies that the corresponding network is
undirected. Γ = diag{γ1, γ2, ..., γn} > 0 is the in-
ner coupling positive definite matrix between two con-
nected nodes i and j; c is the coupling strength; The
time series {t1, t2, t3, ...} is a sequence of strictly in-
creasing impulsive moments. Throughout this paper, µ
is assumed to satisfy |µ| < 1 which means that corre-
sponding impulsive effects are synchronizing [Lu et al.,
2010]. We always assume that xi(t) is left-hand con-
tinuous at t = tk, i.e., x(tk) = x(t−k ). Hence, the so-
lutions of (1) are piecewise left-hand continuous func-
tions with discontinuities at t = tk for k ∈ N.

Assumption 1. The nonlinear function f(x(t)) =
[f1(x1(t)), ..., fn(xn(t))]T is assumed to satisfy a Lip-
schitz condition, that is, there exist constants lk >
0 (k = 1, 2, . . . , n) such that |fk(x1) − fk(x2)| ≤
lk|x1−x2| (k = 1, 2, . . . , n) holds for any x1, x2 ∈ R.
Denote L = diag{l1, l2, ..., ln}.

Remark 1. For complex dynamical networks, it is re-
alistic to consider impulsive effects (sudden changing)

in the process of signal exchanging instead of in each
node. The constant impulsive gain considered in this
paper is only for the sake of analytical simplification,
and it does not cause any loss of generality in the sense
of stabilization analysis.

Remark 2. From the second equation of (1), we can
derive that xi(t+k ) = µ · xi(t−k ) + c̃k(∀ c̃k ∈ Rn),
which further implies that xi(t+k )− ck = µ · (xi(t−k )−
ck)(∀ ck ∈ Rn). Then, the impulses occurring in the
process of coupling can be essentially regarded such
that identical impulsive controllers are operating on
the nodes of the network. Hence, a corresponding im-
pulsive control strategy can be developed to determine
the value of xi(t+k ).

Let x∗ be an equilibrium point of the isolated dynami-
cal system: ż(t) = Cz(t)+Bf(z(t)). In this section, a
single impulsive controller will be used to stabilize the
dynamical network (1) to the objective state x∗. With-
out loss of generality, the first node is selected to be
controlled, and the impulsive controller is designed as
follows:

x1(t+k )− x∗ = µ · (x1(t−k )− x∗). (2)

Let ei(t) = xi(t)− x∗ for i = 1, 2, ..., N . By adding
the single impulsive controller (2) to the dynamical net-
work (1), we obtain the following impulsive dynamical
network:





ėi(t) = Cei(t) + Bg(ei(t)) + c
N∑

j=1

aijΓej(t),

t ≥ 0, t 6= tk, k ∈ N,
ej(t+k ) − ei(t+k ) = µ · (ej(t−k )− ei(t−k )),

for (i, j) satisfying aij > 0,
e1(t+k ) = µ · e1(t−k ),

(3)

where g(ei(t)) = f(ei(t) + x∗) − f(x∗) and
c
∑N

j=1 aijΓx∗ = 0 are utilized.
Since the impulsive effects are synchronizing and the

impulses will be used for the stabilization of dynam-
ical networks, we do not need long intervals between
impulses. Hence, the following Definition 1 is given
to guarantee that the occurrence frequency of the im-
pulses is not too low.

Definition 1. [Lu et al., 2010] The average impulsive
interval of the impulsive sequence ζ = {t1, t2, · · · } is
less than Ta, if there exist positive integer N0 and pos-
itive number Ta, such that

Nζ(T, t) ≥ T − t

Ta
−N0, ∀T ≥ t ≥ 0, (4)

where Nζ(T, t) denotes the number of impulsive times
of the impulsive sequence ζ in the time interval (t, T ).



Definition 2. The impulsive dynamical network (1) are
said to be globally exponentially stabilized if there exist
η > 0, T > 0 and M0 > 0, such that for any initial
values, ‖ei(t)‖ ≤ M0e

−ηt hold for all t > T , and for
any i = 1, 2, ..., N .

Lemma 1. [Horn and Johnson, 1990] For an irre-
ducible matrix A with non-negative off-diagonal ele-
ments, which satisfies the zero-row-sum condition, we
have the following propositions:

(1). If λ is an eigenvalue of A and λ 6= 0, then Re(λ) <
0;

(2). A has an eigenvalue 0 with multiplicity 1 and its
corresponding right eigenvector is [1, 1, ..., 1]T ;

Lemma 2. For any vectors x, y ∈ Rn, scalar ε > 0,
and positive definite matrix Q ∈ Rn×n, the following
inequality holds: 2xT y ≤ εxT Qx + ε−1yT Q−1y.

3 Stabilization of strongly connected networks
In this section, a criterion will be established to ver-

ify whether the single impulsive controller (2) is ef-
fective for the globally exponential stabilization of the
undirected dynamical network (1) with a strongly con-
nected structure. That is, globally exponential stability
of the controlled dynamical network (3) will be stud-
ied. Undirected and strongly connectivity of the net-
work means that the corresponding coupling matrix A
is symmetric and irreducible.

Theorem 1. Consider the controlled dynamical net-
work (3) with a symmetric irreducible coupling ma-
trix A. Suppose that Assumption 1 holds, and the
average impulsive interval of the impulsive sequence
ζ = {t1, t2, ...} is less than Ta. Then, the controlled
dynamical network (3) is globally exponentially stable
with the convergence rate η if

η
M=

2ln(|µ|)
Ta

+ δ < 0, (5)

where δ = λmax(C + CT + BBT + LT L).

Proof. Construct a Lyapunov function in the form of

V (t) =
N∑

i=1

eT
i (t)ei(t). (6)

Thus, for t ∈ (tk−1, tk], taking the time derivative of
the Lyapunov function (6) along the trajectories of (3),

we get

V̇ (t)

= 2
N∑

i=1

eT
i (t)[Cei(t) + Bg(ei(t)) + c

N∑

j=1

aijΓej(t)]

= 2
N∑

i=1

[eT
i (t)Cei(t) + eT

i (t)Bg(ei(t))]

+2c

N∑

i=1

N∑

j=1

aije
T
i (t)Γej(t). (7)

By Assumption 1 and Lemma 2, the following in-
equality can be derived:

2(xi − xj)T B(f(xi)− f(xj))
≤ (xi − xj)T (BBT + LT L)(xi − xj). (8)

According to the facts that A is an irreducible and
symmetric Laplacian matrix with zero-row-sum and
non-negative off-diagonal elements, we can conclude
from Lemma 1 that λmax(A) = 0. Hence, we obtain
the following inequality:

2c

N∑

i=1

N∑

j=1

aije
T
i (t)Γej(t)

=
N∑

i=1

N∑

j=1

2caij [
n∑

k=1

eT
ik(t)γkejk(t)]

=
n∑

k=1

2cγk(ek(t))T Aek(t)

≤ λmax(A)
n∑

k=1

2cγk(ek(t))T ek(t)

= 0, (9)

where ek(t) = [e1k(t), e2k(t), ..., eNk(t)]T .
By referring to the inequalities (8) and (9), it follows

from (7) that, for t ∈ (tk−1, tk],

V̇ (t) ≤
N∑

i=1

eT
i (t)(C + CT + BBT + LT L)ei(t)

≤ λmax(C + CT + BBT + LT L)
Ni∑

i=1

eT
i (t)ei(t)

= δ · V (t). (10)

Hence, we yield

V (t) ≤ eδ(t−tk−1)V (t+k−1), t ∈ (tk−1, tk], k ∈ N.(11)

It follows from (3) that xj(t+k ) − xi(t+k ) = µ ·
(xj(t−k ) − xi(t−k )), for each pair of (i, j) satisfying



aij > 0. Since A is irreducible, for any suffix j (j 6= 1),
there exist suffixes s1, s2, ..., sm, such that a1,sm

> 0,
asm,sm−1 > 0, · · · and as1,j > 0. Thus, for the pair of
suffixes 1 and j (∀j = 2, 3, ..., N ), we have

xj(t+k )− x1(t+k )
= (xj(t+k )− xs1(t

+
k )) + (xs1(t

+
k )− xs2(t

+
k )) + · · ·

+(xsm(t+k )− x1(t+k ))
= µ · (xj(t−k )− xs1(t

−
k )) + µ · (xs1(t

−
k )− xs2(t

−
k ))

+ · · ·+ µ · (xsm(t−k )− x1(t−k ))
= µ · (xj(t−k )− x1(t−k )). (12)

Combining (12) with (2), we obtain xj(t+k ) − x∗ =
µ · (xj(t−k )− x∗), that is,

ej(t+k ) = µ · ej(t−k ). (13)

Hence, for t = tk, k ∈ N, one gets

V (t+k ) =
N∑

i=1

eT
i (t+k )ei(t+k )

= µ2
N∑

i=1

eT
i (t−k )ei(t−k )

= µ2V (t−k ). (14)

The following results come from (11) and (14).
For t ∈ (t0, t1], V (t) ≤ eδ(t−t0)V (t+0 ), which

leads to V (t1) ≤ eδ(t1−t0)V (t+0 ) and V (t+1 ) ≤
µ2eδ(t1−t0)V (t+0 ).
Similarly, for t ∈ (t1, t2], V (t) ≤ eδ(t−t1)V (t+1 ) ≤

µ2eδ(t1−t0)V (t+0 ).
In general, for t ∈ (tk, tk+1], V (t) ≤

µ2keδ(t−t0)V (t+0 ).
Let Nζ(t, t0) be the number of impulsive times of the

impulsive sequence ζ on the interval (t0, t). Hence, for
any t ∈ R, we obtain

V (t) ≤ µ2Nζ(t,t0) · eδ(t−t0) · V (t+0 ). (15)

Since the average impulsive interval of the impulsive
sequence ζ = {t1, t2, · · · } is less than Ta, we have

Nζ(t, t0) ≥ t− t0
Ta

−N0, ∀T ≥ t ≥ 0. (16)

Since |µ| < 1, it follows from (15) and (16) that

V (t)
≤ µ2Nζ(t,t0) · eδ(t−t0) · V (t+0 )

≤ µ2(
t−t0
Ta

−N0) · eδ(t−t0) · V (t+0 )

≤ µ−2N0 · e 2ln(|µ|)
Ta

(t−t0) · eδ(t−t0) · V (t+0 )

≤ µ−2N0 · e(
2ln(|µ|)

Ta
+δ)(t−t0) · V (t+0 ). (17)

It can be concluded from (17) that there exists constant
M0 = µ−2N0 , such that

V (t) ≤ M0 · eη(t−t0) · V (t+0 ), (18)

which further implies that

‖ei(t)‖2 ≤ V (t) = O(eη(t−t0)). (19)

If follows from η < 0 that the whole dynamical net-
work (1) can be globally exponentially stabilized to the
equilibrium point x∗ by the single impulsive controller
(2). Theorem 1 is proved completely.

Remark 3. In Theorem 1, the effects of single impul-
sive controller and a single node dynamic concerning
stabilization are respectively expressed by 2ln(|µ|)

Ta
and

δ. The smaller 2ln(|µ|)
Ta

is, the higher the speed of the
stabilizing process will be.

Remark 4. It should be noted that the equilibrium
point x∗ can be replaced by any trajectory s(t) sat-
isfying ṡ(t) = Cs(t) + Bf(s(t)). The whole dynami-
cal network (1) can also be globally exponentially sta-
bilized to the trajectory s(t) by slightly modifying the
single impulsive controller (2) to be x1(t+k ) − s(t) =
µ · (x1(t−k )− s(t)).

4 Numerical example
In this section, a numerical example is given for the

illustration of our theoretical results. A chaotic sys-
tem is considered as an isolated node of the dynamical
network, which is described by the following equation
[Zou and Nossek, 1993]:

ẋ(t) = Cx(t) + Bf(x(t)), (20)

where x(t) = (x1(t), x2(t), x3(t))T ∈ R3

is the state vector, and the parameters are

C = −diag{1, 1, 1}, B =




1.16 −1.5 −1.5
−1.5 1.16 −2.0
−1.2 2.0 1.16


,

and fi(s) = (|s + 1| − |s − 1|)/2. Thus the Lipschitz
condition is fulfilled with constants l1 = l2 = l3 = 1.
The above choice of the parameters is purposely to
design a chaotic system shown in Figure 1. The single
neural network model (20) has a chaotic attractor with
the initial values x0 = (0.3, 0.2, 0.1)T . With the given
parameters, the equilibria of (20) are, respectively,
x∗1 = (−1.22259936,−0.655802861, 0.697535771)T ,
x∗2 = (0, 0, 0)T , and x∗3 =
(1.22259936, 0.655802861,−0.697535771)T . In
this example, x∗3 is selected to be the objective state.
We consider a Watts-Strogatz small-world network

[Watts and Strogatz, 1998] with 300 interconnected
nodes. In this example, the parameters are set as N =
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Figure 1. (a). Chaotic attractor; (b). Time series.

300, K = 4 and p = 0.1 to generate a small-world
network. When the small-world network is generated,
the coupling strength aij for each edge is defined as
follows: if there is a connection between nodes i and j
(i 6= j), then aij = aji = 1; otherwise, aij = aji = 0.
Suppose that the average impulsive interval Ta of the
impulsive sequence is less than 0.037, and the impul-
sive strength µ = 0.8. By simple computation, we
obtain that 2ln(|µ|)

Ta
= −12.7511, δ = 11.9753 and

η = −0.7758. According to Theorem 1, it can be
concluded that the complex dynamical network (1) can
be stabilized to the equilibrium point x∗3 via the sin-
gle impulsive controller (2). Figure 2 represents an im-
pulsive sequence ζ̄ with the average impulsive interval
Ta = 0.035 and N0 = 20. The stabilization process of
the small-world coupled dynamical network is plotted
in Figure 3, in which the initial conditions of the nodes
are randomly chosen from [−1, 1]. The effective of the
single impulsive controller has been illustrated by this
numerical example.
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5 Conclusion
A single impulsive controller is designed to stabilize

a complex dynamical network with impulsively inter-
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, i

=1
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Figure 3. State variables of the small-world coupled dynamical net-
work (1) under the single impulsive controller (2).

connected nodes. There is no requirement on the lower
bound and upper bound of impulsive intervals. The
convergence rate of the stabilizing process is also ob-
tained. A numerical example is finally given to illus-
trate the efficiency of the single impulsive controller.
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