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Abstract 
V.N.Chelomei in his famous paper [Chelomei, 

1956] recognized that statically unstable elastic 
systems can be stabilized by vibrations. In particular, 
he came to the conclusion that the elastic column 
compressed by an axial force, exceeding the critical 
Euler value, can be stabilized by high frequency axial 
vibration applied to the end of the column. In this 
paper we discuss contradictions between assumptions 
and results of the paper [Chelomei, 1956]. We 
derived and analyzed formulas for the higher and 
lower boundaries of the stabilization frequency. It is 
shown that unlike stabilization of an inverted 
pendulum by high frequency vibration of the support 
the column is stabilized by excitation frequencies of 
the order of the first frequency of transverse 
oscillations of the column belonging to a certain 
region.  
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1   Formulation of the problem 
V.N. Chelomei in [Chelomei, 1956] considered a 
straight elastic rod of constant cross section, loaded 
by a periodic longitudinal force 

0( ) ( )tP t P P tφ ω= +  applied to its end. The 
equation of transverse oscillations of the rod can be 
written as  
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where x  is the coordinate along the rod axis; t  is 
the time;  is the rod deflection function; m  is 

the mass per unit length; EJ  is the flexural rigidity; 

( , )u x t

γ  is the damping coefficient; tP and ω  are the 
excitation amplitude and frequency of the 
longitudinal vibration, respectively. Chelomei 
considered the case in which both ends of the rod 
were simply supported. Then solution of Eq. (1) can 
be found in the form of a series in eigenfunctions 
            ( , ) ( ) sin( / )j

j
u x t t j x lϕ π=∑ . 

Substituting this series into Eq. (1), multiplying by 
sin( / )k x lπ , and integrating the result over the 
interval [0, l], we arrive at an equation with respect to 
the functions ( )k tϕ  
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where 222 // lmEJkk π=Ω  is the -th 
eigenfrequency of transverse free oscillations of the 
unloaded rod, and is the k -th 
critical Euler’s force. Let us introduce notation 

k

222 / lEJkPk π=

kk Ω= /γβ  and new time variable .tωτ =  Then, 
Eq. (2) can be rewritten as 
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The trivial equilibrium of the rod 0),( =txu  is 
asymptotically stable if the functions asymptotically 
vanish 0)( →tkϕ  as , ., and it is 
unstable if at least one of the functions 

∞→t ,...2,1=k
( )k tϕ  exhibits 

unlimited growth as ∞→t . 
      In his paper [Chelomei, 1956], that became 
famous, Chelomei stated the problem of stabilization 
of an elastic rod loaded by a periodic longitudinal 
force exceeding in average the Euler's critical value 

, i.e., of a statically unstable rod, by means 
of longitudinal vibration bringing it to the straight 
position. Assuming that the excitation frequency is 
high as compared with the natural frequency of the 
transverse oscillations of the uncompressed rod 

10 PP >

)( 1Ω>>ω and applying the perturbation method 
and the averaging method to Eq. (3) ( 1)k = , 
Chelomei [Chelomei, 1956] obtained an inequality 
describing the rod stabilization domain. In the case of 
( ) ττφ cos= , this inequality can be written as 
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where ,1/ PPt=ε 1/ 10 −= PPα , and 11 /Ω= γβ . 
 There is an obvious discrepancy: in deriving this 
relation, it was assumed that 1/ 1 >>Ωω , while the 
critical stabilization frequency turns out to be of the 
order of the natural frequency. Indeed, setting, for 
example 1.0=ε , 05.0=α , 01 =β we obtain from 

Eq. (4) that 316.010/1/ 1 =<Ωω . As it follows 
from Eq. (4), taking damping into account one only 
lowers the upper boundary of the stabilization 
frequency. Besides, Chelomei [Chelomei, 1956] did 
not impose a limitation on the stabilization frequency 
from below. The absence of this lower boundary 
leads to the paradoxical conclusion that the rod can 
be stabilized by applying an arbitrarily low 
longitudinal vibration! 
      The Chelomei problem [Chelomei, 1956] of 
stabilizing the elastic rod was included with slight 
corrections into the well-known monograph by 
Bogolyubov and Mitropol'skii [Bogolyubov and 
Mitropol'skii, 1974]. Bolotin in [Bolotin, 1999] 
without referring to [Chelomei, 1956] also analyzed a 
possibility of the longitudinal vibrations use to 
stabilize an elastic rod compressed by a periodic 
longitudinal force exceeding in average Euler's 
critical value. Based on numerical results, he arrived 
at the conclusion that the analogy with the problem 
of stabilization of the inverted pendulum is not 
correct due to the presence of intermittent resonance 
zones of instability caused by higher harmonics, 
which decrease the domains of rod stabilization. In 
addition, Chelomei [Chelomei, 1956; Chelomei, 
1983] always mentioned the high-frequency 
stabilization of a rod loaded by a periodic force 
exceeding in average Euler's critical value, but he did 
not report the particular values of the stabilization 
frequency achieved in the experiments [Chelomei, 
1983]. Recently, new attempts to investigate the 
stabilization of a statically unstable rod by means of 
high-frequency longitudinal vibrations were 
undertaken in [Jensen , 2000; Jensen, Tcherniak and 
Thomsen, 2000]. However, the conclusions made in 
these papers were rather ambiguous. It was stated 
[Jensen, 2000], in particular, that a rod subjected to 
high-frequency excitation had both a curved stable 
configuration and a straight stable equilibrium shape; 
the experiments [Jensen, Tcherniak and Thomsen, 
2000] confirmed the stiffening effect (an increase of 
the natural frequencies of transverse oscillations) by 
longitudinal high-frequency excitation, but the 
critical forces or stabilization frequencies were not 
found. 
 

2   Stability analysis 
For analysis of the rod stabilization, let us use the 

results of investigation of the stability domains for 
the Hill equation with damping [Seyranian, 2001; 

Seyranian and Seyranian, 2006]. Applying these 
results to Eq. (3) with 1=k  for the case in which 
the constant component of the longitudinal force is 
slightly greater than Euler's critical value, 

11/0 10 <<−=< PPα , assuming a small 

excitation amplitude 1/ 1 <<= PPtε  and 

( ) cosφ τ τ= , we arrive at an inequality determining 
the stabilization domain:   
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This formula differs from the Chelomei formula (4) 
only by the last small term. 
      According to the Strutt-Ince diagram for the 
Mathieu-Hill equation [Panovko, 1987; Merkin, 
1987], there exists a lower boundary for the 
frequency ω . In order to obtain a formula describing 
this boundary, it is necessary to analyze the stability 
domain occurring near the first critical frequency. Let 
us first consider the case where damping is absent, 

01 =β . Retaining terms of the first and second 
order of smallness in ε , we obtain 
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Formula (6) can be extended to the case of small 
damping. Assuming the critical value of the 
frequency to be 2

1( / ) H 2
1ω βΩ = + ∆ , where ∆   

is a coefficient, and using the formula for the first 
stability domain of the Mathieu-Hill equation with 
small damping [Thomsen, 2003], we obtain 
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Finally, combining Eqs. (5)-(7) we find the rod 
stabilization conditions in the form of a two-sided 
inequality for the stabilization frequency 
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Thus, the stabilization domain boundaries depend on 

three small parameters, namely, ε , α  and 1β . 
Inequality (8) indicates that taking damping into 
account lowers both the upper and lower boundaries 
of the stabilization frequency. Note that the 
stabilization domain exists only provided that the 
right-hand side of inequality (8) is greater than zero, 
or 
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which implies that the excitation amplitude must be 
fairly large. 
 

 
 
  Figure 1. Stabilization domain of the rod. 
 
  Figure 1 shows the dependence of the lower and 
upper boundaries of the stabilization frequency on 
the parameters ε  and α  calculated from Eq. (8) at 
the damping coefficient . As can be seen, 
the stabilization domain is located between two 
surfaces. The two-dimensional domains of stability 
(projections) of the trivial equilibrium of the rod in 
the presence of longitudinal excitation obtained for a 
damping coefficient of  and the values 

05.01 =β

05.01 =β
05.0=α  and 1.0=α , are presented in Figs. 2 and 

3, respectively. The instability domains (shaded) 
were obtained numerically by determining the 
monodromy matrix followed by the calculation of the 
system multipliers and the estimation of their moduli 
(Floquet theory). Bold curves represent the analytical 
dependence of the frequency on the excitation 
amplitude in accordance with  Eq. (8). Figures 2 and 
3 show a good agreement between the analytical and 
numerical results.  
  It is interesting to investigate the possibility of 
stabilizing the rod by means of longitudinal 
vibrations at a given frequency with the variable 
parameters ε  and α . Figure 4 shows the 
stabilization domain (unshaded) obtained 
numerically for the values of  and 1/ 1 =Ωω

05.01 =β . The corresponding analytical 
dependences can be obtained from the two-sided 

  
Figure 2. Projection of the stabilization domain at 

0.05α = . 
      

 
 
Figure 3. Projection of the stabilization domain at 

0.1α = .        

inequality (8). In particular, for small ε  and 1β , the 
approximate formula for the stabilization domain 

 is valid. From Fig. 4 it follows that, at a 
moderate excitation amplitude 

2/2εα <
ε , stabilization of the 

rod is possible only for forces slightly exceeding the 
critical value: 11/ 10 <<−= PPα .  
 

 
 
Figure 4. Stabilization domain (unshaded) at given 
excitation frequency 1/ 1 =Ωω . 
 
 

  



3   Influence of higher harmonics 
 Let us estimate the influence of the instability 
(parametric resonance) domains  for Eq. (3) at 

 on the stabilization domain found 
above. It is possible that the instability domains for 
Eq. (3) at  intersect with the stability 
domain, thus narrowing the stabilization region. It is 
known [Merkin, 1987; Seyranian, 2001] that the 
parametric resonance for the Mathieu-Hill equations 
(3) takes place at frequencies close to 
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Using this expression and taking into account Eqs. 
(2) and (3), we obtain the following critical values of 
the excitation frequencies:   
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Taking into account that , in the problem under 

consideration is close to ,   we determine the first 
four resonance frequencies. For , Eq. (11) 

yields the following approximate values: 

0P

1P
2=k

134 Ω ,  

132 Ω , 13/34 Ω , …,3 1Ω ; while for 

 we have: 3=k 1212 Ω , 126 Ω , 124 Ω , 

…,23 1Ω . It is known that, for the Mathieu-Hill 
equations (3), only the first instability domains near 

the frequencies  134 Ω  and 1212 Ω  are wide;  
in the presence of even a small damping, the 
instability corresponding to large values of n  
vanishes at moderate excitation amplitudes. Hence, it 
follows that, in the presence of damping, the 

 instability domains for Eq. (3) at do not 
influence the stabilization domain (8). Numerical 
calculations confirm this conclusion. However, this 
conclusion contradicts the results of [Bolotin, 1999], 
according to which the stabilization domain 
alternates with the instability domains for higher 
harmonics. Therefore, the stabilization domain 
obtained numerically in [Bolotin, 1999] agrees with 
the results presented in Fig. 2 only for small

…,3,2=k

ε  and 
ω  . 

4   Conclusion 
 The analogy between the Chelomei problem and the 
problem of stabilization of an inverted pendulum 
with a vibrating suspension point, noted in [Chelomei, 
1956], seems quite natural. Indeed, in both cases 
statically unstable systems are stabilized by means of 
vibrations. Both problems reduce to an analysis of 
the stability domain for the Mathieu-Hill equation at 
negative frequencies close to zero. The difference is 
that, at small excitation amplitude, the pendulum in 
the upper vertical position is stabilized by a 
frequency which is greater than the critical value and 
high as compared with the natural frequency of the 
pendulum, whereas an elastic rod is stabilized by 
excitation frequencies of the order of the natural 
frequency of transverse oscillations belonging to a 
certain interval. 
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