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Abstract
We analyze heat and work fluctuations in the gravi-

tational wave detector AURIGA [Zendriet al., 2002],
modeled as a macroscopic electromechanical oscillator
in contact with a thermostat and cooled by an active
feedback system. The oscillator is driven to a steady
state by the feedback cooling, equivalent to a viscous
force.
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1 Introduction
Cold damping feedback is effective in reducing the

thermal noise induced motion of an oscillator by ap-
plying a viscous force: this has operated successfully
in a wide variety of devices, from nano to macroscopic
resonators, and in a variety of implementations, includ-
ing both optical and electrical forces. In basic research,
the cold damping is considered either to reduce the po-
sition uncertainty of macroscopic bodies due to ther-
mal noise below the level of intrinsic quantum fluctu-
ations, to allow the observation of quantum dynamics
of these systems [Aspelmeyer and Schwab, 2008], or
to improve the behavior of future gravitational wave
detectors [Manciniet al., 1998], where displacement
measurements with uncertainty at the Heisenberg limit
will be at reach.
It is customary to assume the cold-damped oscillator

equivalent to a higher-loss one, in thermodynamic equi-
librium at a fictitious temperatureTeff smaller thanT0,

the thermodynamic temperature of the bath which it is
in contact with. By contrast in this work, we aim to
reveal the nonequilibrium nature of the steady states
of our cold-damped oscillator, and to characterize the
fluctuations of its thermodynamic observables.
In the past 15 years, a large number of works has been

devoted to similar problems. In particular, the Fluctu-
ation Relation (FR) concerning the entropy production
rate in deterministic systems, which was obtained in
Ref. [Evanset al., 1993] and was further developed e.g.
in Ref.s [Evans and Searles, 1994; Gallavotti and Co-
hen, 1995; Rondoniet al., 2000; Searleset al., 2007;
Bonetto, 2006], motivated similar studies in stochastic
systems, of interest in our investigation. Ref. [Kur-
chan, 1998] concerns Langevin dynamics with an ex-
ternal deterministic driving term and leads to a FR
closely analogous to the one of Ref. [Evanset al.,
1993]. Reference [Harriset al., 2006; Baiesi, 2006;
Visco, 2006] considers possible alternative scenarios.
The result of these, as well as of many other theoretical
studies, is that the FR for some properly identified ob-
servable (called dissipation function) is quite generally
valid in systems of physical interest. Hence the FR has
become a standard tool to characterize nonequilibrium
systems. Indeed, various experimental tests confirmed
this view, see Ref. [Wanget al., 2002] for dragged
colloidal particles, Ref. [Garnier and Ciliberto, 2005]
for electrical circuits and Ref. [Douarcheet al., 2006;
Joubaudet al., 2007] for mechanical oscillators.
In these works, the nonequilibrium state is caused

by an external, deterministic agent. Differently,
thanks to the feedback cooling, here for the first
time we study experimentally an oscillator driven by



Figure 1. The normal mode is approximated, around its resonance

frequency, by a series-RLC circuit. The dc SQUID is represented as

current amplifier with two noise sources, which can be neglected at

moderate feedback gains. The observable is the currentIs, and the

electronic feedback cooling is obtained by sending back a currentId

which is a delayed copy ofIs reduced byG ≪ 1. The SQUID

output voltage isVout = AIs with A = 2.6 106 Ω.

a stochastic force, a situation investigated theoreti-
cally in Ref.s [Farago, 2002; Kim and Quian, 2007],
where however opposite conclusions about the FR were
reached. In our case the force is due to an external
agent equivalent to a viscous force, which breaks the
time reversibility of the equation of motion. Our results
reveal that AURIGA is away from equilibrium and that
our Langevin model describes correctly its fluctuations
(see also Ref. [Bonaldi, 2009]). The fluctuations of the
injected power are in good agreement with the analyti-
cal calculation performed in Ref. [Farago, 2002].

2 The experimental system

AURIGA is based on a2.2 × 103 kg, 3 m long bar
made of a low loss aluminum alloy (Al5056), cooled to
liquid helium temperaturesT0 = (4.6 ± 0.2) K. The
fundamental longitudinal mode of the bar, sensitive to
gravitational waves, has effective mass M=1.1 × 103

kg and resonance frequencyω0/2π ∼ 900 Hz. The
bar resonator motion is detected by a capacitive sensor
followed by a double stage dc-SQUID amplifier; the
displacement sensitivity is about5 ·10−20 m/

√
Hz over

a ∼ 100 Hz bandwidth aroundω0, largely limited by
thermal noise. The detector can be modeled by three
coupled low-loss resonators: two mechanical ones (the
bar itself and a plate of the capacitive transducer) and
an LC electrical one, whose dynamics is well described
by three normal modes at separate frequencies, each
being a mixture of the electrical and mechanical res-
onators [Vinanteet al., 2002; Baggioet al., 2005]. A
mode can be modeled as a RLC series electrical oscilla-
tor with an effective inductanceL, capacitanceC and
resistanceR which assume different values for the 3
oscillators (Figure 1). To the sole purpose of improv-
ing the electronics stability and easing the data analy-
sis, AURIGA employs an electronic feedback cooling
scheme on the detector, which is equivalent to a viscous
force that damps the oscillators [Vinanteet al., 2008].

2.1 Langevin model
The dynamics of each electromechanical oscillator, at

moderate feedback gains, is well approximated by (see
Fig. 1):

(L − Lin)
d2q(t)

dt2
+ R

dq(t)

dt
+

q(t)

C
=

VT (t) − Vd(t) (1a)

Vd(t) = Lin

dIs(t)

dt
(1b)

I(t) + Id(t) = Is(t) (1c)

I(t) =
dq(t)

dt
(1d)

where the observable is the output currentIs and the
noise due to the SQUID amplifier is neglected. In ther-
modynamic equilibrium, each oscillator is driven by
the stochastic voltageVT (t) =

√
2kBT0R Γ(t) , where

Γ is a Gaussian white process. This should hold even
in our nonequilibrium case, since the feedback cooling
concerns only 3 modes, out of the very many degrees
of freedom of the thermal bath, and is not expected to
affect significantly the thermal noise arising from the
interaction with the bath. The feedback currentId is
chosen to be:

Id(t) = GIs(t − td) (2)

wheretd = π
2ωr

, ωr = 1/
√

LC is the oscillator’s res-
onant angular frequency andG ≪ 1 [Vinante et al.,
2008]. This choice produces a feedback force equiva-
lent to a viscous damping.
Equation (1b) includes memory effects, due to contri-

butions from timest − td, because of the constraints
(1c) and (2). However, thanks to the very low losses
of the oscillators, the currentsIs, Id and I oscillate
at ωr with amplitude and phase changing appreciably
only on timescales of several cycles. Thus, the quasi-
harmonic approximationI(t) = Î(t) sin[ωrt + φ̂(t)],
like the analogous ones forIs andId, seems appropri-
ate. In this approximation, each oscillator obeys:

L
dIs(t)

dt
+ Is(t) [R + Rd] +

qs(t)

C
=

√

2kBT0R Γ(t) (3a)

Is(t) =
dqs(t)

dt
(3b)

whereRd = GωrLin expresses the viscous damping
on the oscillator due to the feedback loop and the mem-
ory effects are accounted for via the quasi-harmonic
approximation; the feedback efficiency is defined as
g = Rd/R. Equation (3) is not invariant under time
reversal (q′s = qs, I ′s = −Is, t′ = −t) and does not
satisfy the Einstein relation. Nevertheless, it is formally
identical to that describing an oscillator with damping



R + Rd, in equilibrium at the fictitiouseffective tem-
perature Teff = T0/(1+g). The discrepancy between
Teff and the thermal bath temperatureT0 reveals the
nonequilibrium nature of the phenomenon. Hence, the
feedback cooled oscillator is usually treated as an equi-
librium system, withTeff derived from the experimen-

tal value of
〈

Î2
s (t)

〉

= 2
kBTeff

L
, even if no bath atTeff

is present. Operating on the feedback gain, we have
thus achieved a temperature as low as 0.17 mK, for the
coolest of our 3 oscillators [Vinanteet al., 2008].

2.2 Energy balance
Multiplying Eq. (3a) by Is(t) and integrating be-

tween t and t + τ , in the quasi-harmonic approxi-
mation we get an expression for the average power
Pτ = 1

τ

∫ t+τ

t
Is(t

′)VT (t′)dt′ injected by the stochas-
tic thermal force during a timeτ :

Pτ =
U(t + τ) − U(t)

τ
+

R + Rd

τ

∫ t+τ

t

I2
s (t′)dt′

(4)
whereU(t) is the energy stored in the oscillator:

U(t) =
1

2
LI2

s (t) +
1

2

q2
s(t)

C
=

1

2
LÎ2

s (t) (5)

The term proportional toR represents the heat dissi-
pated by the oscillator toward the bath while the term
proportional toRd is the work done by the oscillator on
the feedback:

Wτ = −
1

τ

∫ t+τ

t

Id(t
′)Vd(t

′)dt′ =

1

τ
Rd

∫ t+τ

t

I2
s (t′)dt′ (6)

Notice that the last identity is strictly valid only within
the quasi-harmonic approximation, which relates both
Is(t − td) anddIs(t)/dt to the instantaneous current
Is(t). Further, if τ is a multiple of the period (τ =
N 2π

ωr
, N integer), in the same approximation we can

also write:

Wτ =
1

τ

Rd

2

∫ t+τ

t

Î2
s (t′)dt′ (7)

Conservation of energy implies that the heatQτ ab-
sorbed by the oscillator from the bath averaged in the
time τ is:

Qτ =
U(t + τ) − U(t)

τ
+ Wτ (8)

Figure 2. PDF (units ofs/(kBTeff ) of: (a) the time averaged

energy difference[U(t + τ) − U(t)]/τ , (b) the workWτ and

(c) the heatQτ averaged overτ= 0.2, 0.8, 3.2, 6.4 s. Dashed vertical

line corresponds to 0.84kBTeff /s. The plots show the data col-

lected by AURIGA in an uninterrupted 10 days time span. We show

also (gray dotted lines) the curves obtained by numerical simulation

of Eq. (3) for a 50 days time span. The discrepancies observed

at shortτ between experimental and numerical data are within the

uncertainty due to the experimental error inτeff .

3 Experimental results
To study nonequilibrium properties, we decided to fo-

cus only on the lowest frequency mode out of the 3: this
mode is well separated in frequency from the other two
and it is thus our best approximation of a single oscilla-
tor. The experimental data cover a continuous 10 days
time span and were acquired in march 2008. The sam-
pled currentÎs(t) was processed via the standard AU-
RIGA data analysis and integrated over the resonance
to obtain the current amplitudêIs(t) in the harmonic
approximation. Averaging over several reading of a
thermometer placed on the bar gives usT0 = (4.6 ±
0.2) K and from dedicated calibration of the AURIGA
detector we measureL = (1.67 ± 0.01) 10−4 H and
Lin = (1.48±0.01) 10−6 H. We measure from the ex-
perimental dataωr/2π = 865.7 Hz, decay timeτeff =
(2.36±0.04) s andTeff = (21.1±0.2) mK; hence we
estimateg = 207 ± 10, R = (6.8 ± 0.5) 10−7 Ω and
G = (1.74 ± 0.06)10−2. In Figure 2a and 2b we show
the Probability Density Function (PDF) of the energy
difference and of the work done by the oscillator aver-
aged over growing time intervalsτ : they are calculated
from Eqs. (5) and (7) after dividing the experimental
data in contiguous time intervals of durationτ . In Fig-



ure 2c we show the corresponding heat exchanged by
the oscillator with the bath averaged over different time
intervalsτ and computed via the energy conservation
Eq.(8). The fluctuations of the heat are asymmetric as
expected for a nonequilibrium steady state. We do not
show the PDF of the injected powerPτ , evaluated by
Eq. (4), as they are essentially identical to those ofQτ ,
sincePτ ≈ Qτ wheng = Rd/R ≫ 1.
The PDF of the time averaged energy difference is

symmetric with respect to zero as for an equilibrium
oscillator. It has exponential tails which decay faster
for longerτ . The time averaged work, which is pos-
itive, has a highly asymmetric PDF and from Eq. (7)
and the formal (equilibrium) energy equipartition the-
orem we expect it to have constant mean given by
Rd

kBTeff

L
≃ 0.84 kBTeff /s. As a consequence, the

time averaged absorbed heat assumes negative values
only for short integration times, with the characteristic
time scale given by cold damped oscillator decay time
τeff = 2L/(R+Rd): for τ ≫ τeff the contribution of
the time averaged energy becomes negligible. So in the
presence of feedback (Rd > 0) there is a net heat trans-
fer from the bath to the oscillator: this is precisely the
energy flux that feeds the nonequilibrium steady state.
On the contrary, forRd = 0 the heat equals the energy
difference and its PDF is symmetric with respect to its
(zero) mean value; the feedback modifies the PDF of
the heat making it highly asymmetric.

4 Discussion
This model constitutes only a partial thermodynamic

description of the experimental apparatus, since we do
not account for the entropy produced by the feedback
scheme. So we have actually modeled aMaxwell de-
mon [Leff and Rex, 2003], which uses the measure-
ments ofIs to convert heat from a single heat bath to
work. It is widely accepted that demons do not break
the second law when they are fully accounted for. We
evidence at least two phenomena not considered in our
model: the energy dissipation due to the current flow-
ing in the feedback network and the entropy produced
by the erasure of the previous information in the mea-
surement process [Landauer, 1961]. The former does
not give rise to a fundamental contribution: it depends
on the specific circuit used to implement the feedback
current Eq. (2) and might be made negligible in re-
spect toWτ . On the contrary the latter is unavoidable;
an analysis of information entropy in feedback systems
has been recently addressed for flashing ratchet sys-
tems [Cao, Feito and Touchette, 2009], but no results
are currently available for cold-damped systems.
For this reason we think that our thermodynamic ob-

servables cannot be directly identified with the dissi-
pation function of the FR. On the other hand we can-
not test the FR for the alternative dissipation function
suggested in Ref. [Kim and Quian, 2007] since this re-
quires access to extremely rarely populated tails of the
PDFs. However the situation described by Eqs. (3) and

Figure 3. Plot ofρτ (ǫ̃τ ) for τ=0.2 s (◭), 0.8 s (◮), 3.2 s (•),

6.4 s (�). Solid line is the prediction of Eq.(9). Vertical errors

come from statistic uncertainty, while horizontal errors are mainly

due to the measurement resolution ofτeff ; error bars are not plotted

when smaller than the size of the symbol. As expected, the agreement

with the theory improves with growingτ .

(7) has been considered in Ref.[Farago, 2002] where
the large deviation function of the injected powerPτ is
derived. If τ ≫ τeff , the PDF ofPτ was proved to
satisfy the relation:

ρτ (ǫ̃τ ) ≡
1

τ
ln

PDF(ǫ̃τ )

PDF(−ǫ̃τ )

=

{

4γǫ̃τ , if ǫ̃τ < 1

3
;

γǫ̃τ

(

7

4
+ 3

2ǫ̃τ
− 1

4ǫ̃2τ

)

, if ǫ̃τ ≥ 1

3
.

(9)

where ǫ̃τ = PτL/(kBT0R) is the reduced injected
power andγ = (R+Rd)/L = 2/τeff . Figure 3 shows
the experimentally measuredρτ together with the theo-
retical prediction Eq. (9). The agreement with the the-
ory improves at longerτ , even if the experimental er-
rors grows because large negative values ofǫ̃τ becomes
extremely rare. With the current amount of experimen-
tal data, we were able to test the theoretical predictions
up to τ = 6.4 s; a more accurate study on a set of
3 years of data is ongoing. An experimental test of
Eq. (9) has also been recently obtained in wave turbu-
lence [Falconet al., 2008]. We point out that Eq. (9)
differs greatly from the work fluctuations in a forced
torsional oscillator reported in Ref. [Douarcheet al.,
2006; Joubaudet al., 2007]. In that case, a periodic
forcing was applied and therefore it was possible to de-
velop a complete thermodynamic model of the experi-
ment: hence the proper dissipation function was iden-
tified and the FR was tested successfully.
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