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1. INTRODUCTION  
 
This work deals with the relevant problem of analysis 
and synthesis of robust and adaptive output control of 
indeterminate linear time-varying systems. Among 
the works devoted to control of time-varying systems 
it is essential to distinguish the works of scientists 
Ioannou (Tsakalis and Ioannou, 1987; Tsakalis and 
Ioannou, 1993; Zhang, et al., 2003),   Marino and 
Tomei (Marino and Tomei, 2000; Marino and Tomei, 
2003), Goodwin (Middleton and Goodwin, 1988), 
Bitmead (Zang and Bitmead, 1994; Mareels and 
Bitmead, 1986) and others. In spite of the fact that 
the problem of control of time-varying systems is not 
new and the set of publications is devoted to it, it is 
necessary to note, that a number of relevant problems 
still has no satisfactory decisions. For today a number 
of interesting results for linear systems touching a 
problem of control in conditions of slow change of 
parameters, periodic change of parameters and also 
for a case of special structures of description 
matrixes of time-varying plants in which the linear 
system consists of time-invariant and time-varying 
parts (it is known and coordinated with control input) 
(Fradkov, et al., 1999) is received.1 
 
Among methods of control of time-varying systems 
with unknown parameters the algorithms providing 
                                                 
1 This work was supported in part by RFBR under Grant              
№  05-01-00869-а. 

set behaviour of system for a class of mathematical 
models of certain structure, as a rule, prevail. 
Adaptive and robust control algorithms, allowing 
solving problems of stabilization and tracking for 
time-varying plants in which uncertainty is 
coordinated with a control input (Tsykunov,1996).  
 
In 80-90-th years a series of the publications devoted 
to development of adaptive controllers for linear 
time-varying systems has appeared (Tsakalis and 
Ioannou, 1987; Tsakalis and Ioannou, 1993; 
Middleton and Goodwin, 1988; Kreisselmeier, 1986). 
These results were based on an assumption that 
parameters of the plant vary slowly with time and 
affect on system as external disturbance. Using this 
assumption robust and adaptive control algorithms 
for linear time-varying systems providing small 
tracking error had been synthesized. Later the 
availability of some a priori information about the 
changing of parameters has resulted in development 
of new adaptive algorithms for systems with fast-
changing parameters  (Tsakalis  and Ioannou, 1989; 
Tsakalis  and Ioannou, 1990). However the given 
algorithms could not guarantee high quality of 
transients (Zang and Bitmead, 1994; Mareels and 
Bitmead, 1986), and generally cannot be expanded 
on nonlinear systems with variable parameters. The 
specified problems had been solved, with use of 
iterative procedure of control law synthesis (Zhang, 
et al., 2003). However proposed controller has high 
order (Zhang, et al., 2003). It is necessary to notice, 



that special complexity is represented with control 
problems in which the plant is affected by unknown 
disturbances (Marino and Tomei, 2000; Marino and 
Tomei, 2003).  
 
In this paper a method of output control of linear 
time-varying systems with unknown bounded 
parameters is considered. An assumption, that the 
plant is affected by unknown bounded disturbance, 
was proposed. Furthermore proposed control scheme 
allows synthesizing adaptive controller of fixed 
order, which does not depend of unknown parameters 
as in work (Zhang, Fidan, Ioannou, 2003). The 
proposed method is based on the results published in 
(Bobtsov and Nikolaev, 2005), where the problem of 
stabilization of nonlinear system was considered. 
Thus the represented algorithms can be applied both 
for nonlinear and linear time-varying systems. 

 
 

2. PROBLEM STATEMENT  
 

We consider linear time-varying system  
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where nRtz ∈)(  is vector of state variables; F , L  
and S  are ( nn× ), ( 1×n ) and ( n×1 ) unknown 
constant matrices; nRt ∈)(θ  is vector of unknown 
time-varying parameters; Rty ∈)(  is output variable; 

Rtw ∈)(  is bounded unknown disturbance.   
 
Let us assume that only output variable is measured, 
but not its derivatives, the state )(tz  and disturbance 

)(tw  are not measured and parameters of vector 
nRt ∈)(θ  are smooth and bounded functions. We 

also assume that transfer function 

)(
)()()( 1

pa
pbLFpISpH =−= −  is minimum-phase, 

i.e. )( pb  is a Hurwitz polynomial. 
 

Together with the plant we consider the command 
signal *y  which is measured and satisfies the 
condition 
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where ρ,0=i  and number mn −=ρ  (where n  and 
m  dimensions of  )( pa  and )( pb  polynomials 

accordingly) is a transfer function 
)(
)()(

pa
pbpH =  

relative degree. 
 

We define the purpose of control as the solution of 
the problem of synthesizing the algorithm which at 
any initial conditions ensures the boundedness of all 
system signals  as well as the execution of purpose 
condition 
 

Δ<)(te , (3) 
 
for some 1tt ≥ , where  *yye −=  is a tracking error, 
Δ  is a number which can be decreased by control 
law selection. 

 
 

3. CONTROL DESIGN  
 

We rewrite the system (1) in the following form 
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of unknown time-varying parameters 
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The state-space model (4) can be represented in the 
input-output form 
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where  
dt
dp =  is differentiation operator, transfer 

function i
i DFpIS

pa
pc 1)(
)(
)( −−= . 

 
Before beginning the synthesis of control law let us 
formulate the auxiliary result published in (Bobtsov 
and Nikolaev, 2005). Consider linear system time-
invariant system  
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where nRx ∈′ , Ry ∈′ , Ru ∈′ , and matrixes A′ , 
B′  and C ′  have appropriate dimensions. Transfer 
function of system (6) is determined by expression 
 

BApICp ′′−′= −1)()(χ . 
 
Let the system (6) be closed 
 

yku ′−=′ , (7) 
 
in which number 0>k .  
Let us put a question about existence of positively 
defined matrix TMM =  and number k satisfying the 
correlations 
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for some positively defined matrix TGG = . 
 

Lemma (Bobtsov, 2005; Bobtsov and Nikolaev, 

2005). Let 
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−  and  0...)( apapa n

n ′++′=′  
are numerator and denominator of transfer function 

)( pχ  accordingly. Let )( pb′  be a Hurwitz 
polynomial and 01 >′−nb  then exists a number 00 >k  
for which correlations (8), (9) are solvable for 
any 0kk ≥ . 

 
Choose the control law of the following form 
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where k  is a positive number; the positive parameter 
λ  is intended for compensation of the uncertainties  
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chosen for the  polynomial )()()( pbpp φβ =  to be 
Hurwitz and ( 1−n ) order; function )(te  is the 
estimate of signal )(*)()( tytyte −=  which is 
calculated according to the following algorithm 
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1ξ=e , (12) 
 
where number λσ +> k  ( calculation procedure of 
σ  is presented in Appendix, inequality (A.8)), and 
parameters ik  are calculated for the system (11) to 
be asymptotically stable for input 0=e . 

 
Substituting (10) in equation )(*)()( tytyte −=  we 
obtain 
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where deviation function )(tε  equals 
 

ee −=ε . (14) 
 
Transform the equation (13) in the following way 
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where according to definition of error signal as 
)(*)()( tytyte −=  an equation 

)(*)()( τττ −+−=− tytety  was used. 
  
Let us introduce the following indication 
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where according to the polynomial )( pb  is Hurwitz, 
parameters )(tiθ  are bounded and smooth, signal *y  
and its derivatives up to  order ρ  including  we 
obtain f  is bounded. 
 
Then for equation (13) obtain 
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Let us denote 
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then for (13) we have 
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where according to the polynomial )( pφ  is Hurwitz 

and function )(tf  is bounded we obtain )(tf  is also 
bounded.  
  
Rewrite the input-output model (15) in state-space 
form 
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where nRx∈  is unmeasured state vector of system 
(16); A , b , iq  and c  are appropriate matrixes of 
transition from input-output model to state-space 
model.  
 
As )( pβ  is ( 1−n ) order Hurwitz polynomial then in 
view of lemma presented above number 0k  exists 
that it is possible to find number 0kk ≥  and 
symmetrical positively defined matrix P  satisfying 
following matrix equations 
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where TQQ 11 =  is positively defined matrix. 
 
Notice matrix 1Q  parameters depend on parameter k  
and do not depend on λ . 
 
Let us rewrite model (11), (12) in vector-matrix form 
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Consider new variable  
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then according the matrix h  structure,  error ε will 
become 
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For derivative of η  we obtain 
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As hdk Γ−=1  (can be checked by substitution) then 
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where matrix Γ  according the calculation of 
parameters ik  of model (11) has proper numbers 
with negative real component and satisfies the 
Lyapunov equation:  
 

2QNNT −=Γ+Γ , (22) 
 

where TNN =  and TQQ 22 =  are positively defined 
matrixes. 
 
Theorem.  There exist numbers λσ +> k  and 0>λ  
such that all trajectories of system (16), (21) are 
bounded and control purpose (3) is executed. 
  
The proof of the theorem is presented in Appendix. 
 
 

4. ADAPTIVE TUNING OF PARAMETERS   
 

In this part we consider the problem of choosing the 
controller (10) – (12) parameters σλ,,k  satisfying 
the theorem conditions (see expressions (A.4), (A.7) 
and (A.8)). Possible variant of tuning the coefficients 

σλ,,k  is to increase them as long as the purpose 
condition (3) is executed. 

 
For realization of this idea we use the following 
algorithm 
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 and function )(tμ  is calculated in 
the following way 
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Choose σ  in the following way 
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where number 00 >σ . 
It is obvious that with such calculation of σλ,,k  
exists a point of time 01 tt >  for which, condition 
(17) and inequalities (A.4), (A.7), (A.8) are executed.  



5. SIMULATION RESULTS 
 

Let us consider the Two-Stage Chemical Reactor 
with Recycle Streams (Nguang, 2000): 
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)()( 1 tzty =  (27) 
 
where )(1 tz  and )(2 tz  are the compositions, 1R  and 

2R  are the recycle flow rates, iς  are the reactor 
residence times, iυ  are the reaction constants, 2F  is 
the feed rate and iV  are the reactor volumes. 
 
Choose control law according to equations (10) – 
(12) 
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where polynomial 1)( += ppφ  and coefficient  11=k . 

To tune the parameters k
~

 and σ  we use the method 
proposed in the previous part. Assigning the 
precision 05,0=Δ  and command signal 

ttty 3,0cos5,0sin)(* +=  we simulate the system 
for 50 =μ  and 3,00 =σ . Results of computer 
simulation for unknown time-varying 
parameters t3cos21 =ς , 22 =ς , tetR −⋅= cos25,01 , 

5,02 =R ,  tt 2sin7,01,0sin3,021 ++=υ , 3,02 =υ ,  
5,0221 === FVV  and 2=τ  on variables )(te , )(tu  

and )(
~

tk  are presented in the Fig. 1 – 3 accordingly.  
Computer simulation graphics for 0)0( =y  and 

0)0( =e  illustrate the achievement of proposed 
control purpose.  
 
Let us consider one more time-varying plant: 
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where )(1 tθ  and )(2 tθ  are unknown time-varying 
parameters, )(tw  is unknown disturbance, τ  is 
delay. 
 

 
 

Fig. 1. Transients in control system for variable )(te . 
 

 
 

Fig. 2 Transients in control system for variable )(tu . 
 

 
 

Fig. 3. Transients in control system for variable )(
~

tk . 
 
Choose control law according to equations (10) – 
(12) 
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where polynomial 1)( += ppφ  and coefficient 

11 =k . 
 
Assigning the precision 1,0=Δ  and command signal 

)sin()(* tty =  we simulate the system for 20 =μ  
and 2,00 =σ . Results of computer simulation for 
unknown time-varying parameters 

ttt 10sin1,0sin2)(1 ++=θ , tt cos2)(2 =θ , 



disturbance ttw 3cos2)( += and 3=τ   on variables 

)(te , )(tu  and )(
~

tk  are presented in the Fig. 4 – 6 
accordingly.  
 
Computer simulation graphics for 0)0( =y  and 

0)0( =e  illustrate the achievement of proposed 
control purpose.  
 

 
 

Fig. 4. Transients in control system for variable )(te . 
 

 
 

Fig. 5 Transients in control system for variable )(tu . 
 

 
 

Fig. 6. Transients in control system for variable )(
~

tk . 
 

 
6. CONCLUSION  

 
In the work the problem of synthesis of the output 
control for time-varying system (1) is considered. 
The control law (10) – (12), (23), (24) providing the 
execution of the control purpose (3), was designed. 
Adaptation algorithm (10) – (12), (23), (24) has 
dimension equal to ρ , where ρ   is a relative degree 

of transfer function 
)(
)()()( 1

pa
pbLFpISpH =−= −  of 

system (1). 
The advantages of the proposed approach consist in 
the following: 
• in comparison with (Tsykunov,1996) more 

general form of time-varying system is 
considered, but not a special case of structures of 
description matrixes of time-varying plants when 
the time-varying part is coordinated with control 
input as in (Tsykunov,1996); 

• in contrast to work (Tsykunov,1996), the proposed 
controller is an output controller so the output is 
the only measured variable; 

• intensifying the result represented in work (Zhang, 
et al., 2003), an assumption, that the plant is 
affected by unknown bounded disturbance, is 
proposed; 

• in contrast to algorithm from work (Zhang, et al., 
2003), proposed control scheme  is easier in 
realization, does not require mn −5  additional 
filters and allows synthesizing  adaptive controller 
of fixed order ρ , which depends only on relative 
degree of transfer function 

)(
)()()( 1

pa
pbLFpISpH =−= − , but not on number 

of unknown parameters as in work (Zhang, et al., 
2003); 

 
The disadvantage of the proposed controller in 
comparison with works (Zhang, et al., 2003; Marino 
and Tomei, 2000; Marino and Tomei, 2003) is the 
following:  
• matrix L was considered to be time-invariant.  
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APPENDIX 

 
Proof of the theorem. 

 
Consider the following Lyapunov function 
 

∫
−

++=
t

t

TT deNPxxV
τ

ωωγηη )(2 . (A.1) 

 
Differentiating (A.1) on time in view of the equations 
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Substituting in (A.2) the equations (17) and (22) and 
taking into account correlations 
 

ηλ TT Pbhxk )(2 + ))(( 1 ηηδδλ TTTT hhPxPbbxk −++≤ , 

PxT2 )()(
1

τθ −∑
=

tetq
n

i
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+≤ xPxT 2δ
2

1

1 )()( τθδ −∑
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− tetq
n

i
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212 fPxPbbxfPbx TTT −+≤ λλ , 

xxNchAANhcAxNhc TTTTTTT δηηδη +≤ −12 , 

ηηλ TTT bhNhck )(2 +

))(( ηηηηλ TTTTTT hhNchbbNhck ++≤ , 

ηλητθη NchNhctetqNhc TTTn

i
ii

TT ≤∑ −
=1

)()(2

2

1

1 )()( τθλ −∑+
=

− tetq
n

i
ii , 

beNhcTTλη2− PxPbbxNchNhc TTTTT δληληδ +−≤ 1 , 

21

2
122 fNchbbNhcfbNhc TTTTTT −+≤ ληληη  

 
for the derivative of Lyapunov function (A.1) we 
obtain 
 

2
21 2

1
2
3 ePxPbbxQxQxV TTTT λληση −−−−≤  

+++++ − ηηλδλδ TTTT hhkPxPbbxk )()( 1 xPxT 2δ  

1−+ δ +−∑
=

2

1
)()( τθ tetq

n

i
ii PxPbbx TTλ  

ηηληηλ TTTTTT hhkNchbbNhck )()( ++++  

xxNchAANhc TTTTT δηηδ ++ −1 ηλη NchNhc TTT+
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2

1

1 )()( τθλ −∑
=

− tetq
n

i
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ηληδ NchNhc TTT1−+ ηλη NchbbNhc TTTT2+  

)(
2
3 2221 τγγλ −−++ − teef , (A.3) 

 

where the number 
2
10 ≤< δ  satisfies the following 

condition 
 

1Q− PPbbkI T)
2
12( λδλδδ −+++  

02 <−≤+ QPδ . (A.4) 
 
Substituting expression (A.4) in an inequality (A.3) 
we obtain 
 



ηση 2QQxxV TT −−≤ 2

2
1 eλ− ηηλδ TT hhk )(1 ++ −

2

1

1 )()( τθδ −∑+
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− tetq
n

i
ii ηηδ NchAANhc TTTT1−+

ηηληηλ TTTTTT hhkNchbbNhck )()( ++++  
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i
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ηληδ NchNhc TTT1−+ ηλη NchbbNhc TTTT2+  
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2
3 2221 τγγλ −−++ − teef . (A.5) 

 
As the function )(tiθ  and each element of vector iq  

are bounded, for the norm 
2

1
)()( τθ −∑

=
tetq

n

i
ii  is 

possible to find such positive number 0C  that the 
following condition is executed 
 

≥− 2
0 )( τteC

2

1
)()( τθ −∑

=
tetq

n

i
ii . (A.6) 

  
Let number λ  satisfies the following inequality 
 

⎟
⎠
⎞

⎜
⎝
⎛ +≥

δλ
λ 112 0C . (A.7) 

  
Let number σ  such, that the following correlation is 
executed 
 

+− 2Qσ ++− Thhk )(1 λδ NchbbNhck TTT)( λ+  
Thhk )( λ++ NchAANhc TTT1−+ δ NchNhc TTλ+  

NchbbNhc TTTλ2+ QNchNhc TT −≤+ − λδ 1 . (A.8) 
 
Substituting expression (A.8) in the inequality (A.5) 
we obtain 
 

ηη QQxxV TT −−≤ 212

2
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1 fe −+− λλ  

2

1

11 )()()( τθλδ −∑++
=

−− tetq
n

i
ii . (A.9) 

 
Taking into account condition (A.6), for the 
inequality (A.8) we obtain  
 

ηη QQxxV TT −−≤ 22 1
2
3

2
1 fe −+− λλ  

)()()( 222
0

11 τγγτλδ −−+−++ −− teeteC . (A.10) 
 
Choose γ  in the following way: 
 

0
11 )( C−− += λδγ . (A.11) 

 
Substituting expression (A.11) into (A.10) obtain 
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21

2
3 f−+ λ . (A.12) 

 
Substituting the inequality (A.7) into expression 
(A.12), we obtain 
 

21

2
3 fQQxxV TT −+−−≤ ληη  

1
1

2
3 CQQxx TT −+−−≤ ληη , (A.13) 

 

where numbers 0>ν  and }2max{1 fC = .  
  
From expression (A.13) we obtain that all system 
(16), (21) trajectories are bounded and there exists a 
number 0>λ , that the control purpose (3) is 
executed.  
 
 

 
 


