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Abstract
For continuous and discrete phase control systems the

problem of gradient-like behavior and the problem of
a number of slipped cycles are considered. By means
of generalized periodic Lyapunov-type functions and
Yakubovich-Kalman theorem new frequency-domain
stability criteria as well as new frequency-domain es-
timates for the number of slipped cycles are obtained.
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1 Introduction
This paper is devoted to asymptotic behavior of phase

control systems, i.e. systems of indirect control with
periodic nonlinearities. We consider here both sys-
tems described by differential equations and systems
described by difference equations.
The phase system possesses a denumerable set of

equilibria. Each equilibrium may be Lyapunov stable
or not Lyapunov stable. And the main asymptotic char-
acteristics of phase system is the convergence of any
solution to a certain equilibrium. The systems which
possess such a property are called gradient-like sys-
tems.
The problem of gradient-like behavior for phase sys-

tems has been examined in many published works.
For detailed bibliography one can appeal to [Leonov,
2006].

More precise characteristics of gradient-like system
is the ”number of slipped cycles”. They say that a
phase system with a ∆-periodic nonlinearity and an
angular coordinate σ(t) has slipped k cycles if there
exists a moment t̂ > 0 such, that |σ(t̂)− σ(0)| ≥ k∆
and |σ(t)− σ(0)| < (k + 1)∆, for all t ∈ R+. This
characteristics of a phase system was introduced by
J. Stoker in [Stoker, 1950] for an equation of mathe-
matical pendulum. It was then investigated for multi-
variable phase systems in [Yershova, Leonov, 1983].
The results of [Yershova, Leonov, 1983] were then
extended to other classes of phase systems [Leonov,
Smirnova, 2000], [Smirnova, Shepeljavyi and Utina,
2003], [Yang, Huang, 2007].
Both the problem of gradient-like behavior of a phase

system and the problem of a number of slipped cycles
have been fruitfully investigated by Lyapunov direct
method. Efficient criteria of gradient-like behavior and
efficient estimates for a number of slipped cycles has
been obtained by means of two new types of Lyapunov
functions.
One of them comprises Lyapunov functions which

contain trajectories of gradient-like phase systems of
low order (they are called reduction systems). So any
stability assertion which is true for the reduction sys-
tem can be extended to a phase system of high order
[Leonov, 1984].
The functions which belong to the other type are of-

ten called periodic Lyapunov functions. They have the
form of Lyr’e-Postnikov functions, i.e. they are con-
structed as ”a quadratic form plus an integral of a non-
linear function”. The nonlinear function which is under



the integral sign is generated on the base of the periodic
nonlinear function included in the phase system. This
”new” nonlinear function is of the same period that the
given one and has the same set of zeros.
Two kinds of such ”new” nonlinear functions have

been exploited in published works [Bakaev, Guzh,
1965], [Brockett, 1982], [ Leonov, Reitmann and
Smirnova, 1992]. Consequently two varieties of pe-
riodic Lyapunov functions have been generated.
By means of these functions a number of theo-

rems which give the opportunity to establish the fact
of gradient-like behavior of a phase system and to
get the estimations of the number of slipped cy-
cles have been demonstrated. Usually the neces-
sary and sufficient conditions for the existence of a
periodic Lyapunov function are formulated with the
help of Yakubovich-Kalman frequency-domain theo-
rem [Yakubovich, 1973]. So stability theorems for
phase systems usually contain a frequency-domain in-
equality with varying parameters.
In this paper a new periodic Lyapunov function is

offered. It is a generalization of the two ones, used
in above mentioned works. By means of this new
Lyapunov function new multiparametric frequency-
domain criteria for gradient-like behavior both for con-
tinuous and for discrete phase systems are generated.
On the base of new multiparametric criteria improved
frequency-domain estimates for the number of slipped
cycles are obtained.

2 Frequency-domain conditions for gradient-like
behavior.

Consider an autonomous phase system

ż = Az + Bϕ(σ),
σ̇ = C∗z + Rϕ(σ), (1)

where A is a (m×m) - real matrix, B and C are real m
- vectors, R is a number and ϕ(σ) is a nonlinear func-
tion. The symbol ∗ is used for Hermitian conjugation.
We suppose that the pair (A,B) is controllable, the pair
(A,C) is observable and matrix A is a Hurwitz one.
We assume that ϕ(σ) is ∆-periodic, belongs to C1 and

has two simple zeros on [0, ∆]. Assume also that

∫ ∆

0

ϕ(σ)dσ < 0. (2)

Let

α1 ≤ dϕ

dσ
≤ α2 (3)

for all σ ∈ R, where α1 < 0 < α2.
Let us determine the values

ν =

∫ ∆

0
ϕ(σ)dσ

∫ ∆

0
|ϕ(σ)| dσ

, (4)

ν0 =

∫ ∆

0
ϕ(σ)dσ

∫ ∆

0
|ϕ(σ)|

√(
1− α−1

1 ϕ′(σ)
) (

1− α−1
2 ϕ′(σ)

)
dσ

.

(5)
Let us introduce the transfer function for linear part of

(1) from the input ϕ to the output (−σ̇)

K(p) = −R + C∗(A− pEm)−1B (p ∈ C), (6)

where Em is a unit m×m-matrix.
Let us also introduce the designation

<eH =
1
2
(H + H∗) (7)

for l × l-matrix H .
Theorem 1. Suppose there exist such æ 6= 0, positive

numbers ε, η, τ and nonnegative numbers a, a0, that the
following requirements are fulfilled:
1) for all ω ≥ 0 the inequality

<e
{
æK(iω)− εK∗(iω)K(iω)− τ

(
K(iω) + α−1

1 iω
)∗ ·

(
K(iω) + α−1

2 iω
)}− η ≥ 0 (i2 = −1)

(8)
is valid;
2) a + a0 = 1;
3) matrix

∥∥∥∥∥∥

ε , æaν
2 , 0

æaν
2 , η , æa0ν0

2
0 , æa0ν0

2 , τ

∥∥∥∥∥∥
(9)

is positive definite.
Then every solution of (1) converges to its equilibrium.

Proof. Theorem 1 is an extension of theorem
2.10.1 from monograph [Leonov, Ponomarenko and
Smirnova, 1996]. So we shall borrow certain elements
from the proof of the latter theorem. First of all we use
here the transformation of system (1) to the system

dy(t)
dt = Qy(t) + Lξ(t),

dσ(t)
dt = D∗y(t)

(10)

where

Q =
∥∥∥∥

A B
0 0

∥∥∥∥ , L =
∥∥∥∥

O
1

∥∥∥∥ , D =
∥∥∥∥

C
R

∥∥∥∥ ,

y =
∥∥∥∥

z(t)
ϕ(σ(t))

∥∥∥∥ , ξ = d
dtϕ(σ(t)),

(11)

and by O a zero m-vector is designated. Next we bor-
row from [Leonov, Ponomarenko and Smirnova, 1996]



the following quadratic form of y ∈ Rm+1, ξ ∈ R:

G(y, ξ) = 2y∗H(Qy + Lξ) + ε(D∗y)2 + æy∗LD∗y−
τ(D∗y − α−1

1 ξ)(α−1
2 ξ −D∗y) + η(L∗y)2

(12)
with a symmetric (m + 1) × (m + 1)-matrix H and
numbers ε, æ, τ and η which are introduced in the text
of theorem 1.
It follows from condition 1) of theorem 1 that there ex-

ists a real symmetric matrix H , such that the inequality

G(y, ξ) ≤ 0 (∀y ∈ R1+m, ∀ξ ∈ R) (13)

is true [Leonov, Ponomarenko and Smirnova, 1996].
We are going to use here periodic functions

F (σ) = ϕ(σ)− ν |ϕ(σ)| ,
Φ(σ) =

√(
1− α−1

1 ϕ′(σ)
) (

1− α−1
2 ϕ′(σ)

)
,

(14)

Ψ(σ) = ϕ(σ)− ν0Φ(σ) |ϕ(σ)| , (15)

which have been introduced in [Leonov, Ponomarenko
and Smirnova, 1996] after [Bakaev, Guzh, 1965] and
[Brockett, 1982]. It is clear that

∫ ∆

0

F (σ)dσ = 0,

∫ ∆

0

Ψ(σ)dσ = 0. (16)

With the help of F (σ) and Ψ(σ) we construct a new
Lyapunov-type function

v(t) = y∗(t)Hy(t) + æ
(
a

∫ σ(t)

0
F (σ)dσ+

+a0

∫ σ(t)

0
Ψ(σ)dσ

)
.

(17)

Let dv
dt be the derivative of v(t) in virtue of system

(10).
We have

dv(t)
dt = 2y∗(t)H(Qy(t) + Lξ(t))+

+æ [aF (σ(t)) + a0Ψ(σ(t))] σ̇(t).
(18)

It follows from (13) that

dv(t)
dt ≤ (−εσ̇2(t)− æϕ(σ(t))σ̇(t)−
−ηϕ2(σ(t))− τΦ2(σ(t))σ̇2(t)+

+(æaF (σ(t)) + æa0Ψ(σ(t))) σ̇(t)).
(19)

Using formulas (14) and (15) we conclude from (19)
that

dv(t)
dt ≤ (−εσ̇2(t)− ηϕ2(σ(t))−

−τ (Φ(σ(t))σ̇(t))2 − æaν |ϕ(σ)| σ̇(t)−
−æa0ν0Φ(σ(t)) |ϕ(σ)| σ̇(t)) .

(20)

The right part of inequality (20) is a quadratic form
with regard to σ̇(t), |ϕ(σ)|, Φ(σ(t))σ̇(t). According
to condition 3) of theorem 1 it is negative definite. So
we have

dv(t)
dt

≤ −δϕ2(σ(t)) (21)

with δ > 0. Then

v(t)− v(0) ≤ −
∫ t

0

δϕ2(σ(t)) dt, ∀t ≥ 0. (22)

It follows from (16) that function v(t) is bounded from
bellow. Then from (22) we have that

∫ ∞

0

ϕ2(σ(t))dt ≤ +∞. (23)

Since matrix A is Hurwitzian, function ϕ(σ(t)) is uni-
formly continuous on [0, +∞). Then it follows from
(23) according to Barbalat lemma that

ϕ(σ(t)) → 0 as t → +∞, (24)

This limit relation and lemma 2.5.1 [Leonov, Pono-
marenko and Smirnova, 1996] imply that

σ(t) → σ̂ as t → +∞, (25)

where ϕ(σ̂) = 0, The first equation of system (1) can
be rewritten in the form

z(t) = eAtz(0) +
∫ t

0

eA(t−τ)Bϕ(σ(τ))dτ. (26)

From (23) and the fact that the convolution of two
functions from L2[0, +∞) tends to 0 as t → +∞ we
deduce that

z(t) → 0 as t → +∞. (27)

Theorem 1 is proved.

Theorem 1 was applied to an autonomous second-
order phase-locked loop with proportional-integrating
filter. Its transfer function has the form

K(p) = T
1 + βTp

1 + Tp
, (28)

where T > 0 and β ∈ (0, 1) are constants. The case
of β = 0.2 and ϕ(σ) = sin(σ) − γ, where γ ∈ (0, 1),



was considered. Theorem 1 gave the opportunity to im-
prove the estimate for lock-in range in the space of pa-
rameters (T−1, γ), obtained in [Leonov, Ponomarenko
and Smirnova, 1996] by theorem 2.10.1. With the help
of theorem 1 the gap between the genuine boundary of
lock-in range and its frequency-domain estimate from
[Leonov, Ponomarenko and Smirnova, 1996] was di-
minished for T ≤ 1 by 15% at least.
Consider a discrete phase system

z(n + 1) = Az(n) + Bϕ(σ(n)),
σ(n + 1) = σ(n) + C∗z(n) + Rϕ(σ(n))
(n = 0, 1, 2, . . .),

(29)

where A, B, C, R are described in the beginning of
the section. We suppose that the pair (A,B) is con-
trollable, the pair (A,C) is observable and all eigen-
values of matrix A are situated inside the open unit cir-
cle. All the properties of ϕ(σ) are just the same as in
the beginning of the section. We shall need numbers
k1 = 2α1−α2 and k2 = 2α2−α1. The transfer func-
tion for the linear part of system (29) is the same as that
of system (1).
Theorem 2. Suppose there exist such æ 6= 0, positive

numbers ε, η, τ and nonnegative numbers a, a0, that the
following requirements are fulfilled:
1) for all p ∈ C, |p| = 1 the inequality

<e
{

æK(p)− τ
(
K(p) + (p− 1)k−1

1

)∗ ·
· (K(p) + (p− 1)k−1

2

)}− εK∗(p)K(p)− η ≥ 0
(30)

is valid;
2) a + a0 = 1;
3) matrix

∥∥∥∥∥∥∥∥∥∥

ε− æα0
2 (a(1 + ν)+

a0

(
1− α2−α1√

|α1|α2

))
, æνa

2 , 0

æνa
2 , η, æa0ν0

2
0, æa0ν0

2 , τ α1α2
k1k2

∥∥∥∥∥∥∥∥∥∥

, (31)

where α0 = α2 if æ > 0 and α0 = α1 if æ < 0, is
positive definite.
Then

lim
n→∞

ϕ(σ(n)) = 0,

lim
n→∞

z(n) = 0,

lim
n→∞

(σ(n + 1)− σ(n)) = 0,

lim
n→∞

(σ(n)) = σ̂,

(32)

where ϕ(σ̂) = 0.
Theorem 2 is a generalization of theorem 1 of

[Smirnova, Shepeljavyi, 2007]

3 Frequency-domain estimates for the number of
slipped cycles.

We shall show in this section how a frequency-domain
criterion for gradient-like behavior can be transformed
into a frequency-domain estimate for the number of
slipped cycles. For the purpose we shall bring the num-
ber of slipped cycles into algebraic conditions on vary-
ing parameters. Instead of constants νi and ν0i we shall
use the functions

rj(k, æ, x) =

∆∫
0

ϕ(σ) dσ + (−1)j x
æk

∆∫
0

|ϕ(σ)| dσ

, (33)

r0j(k, æ, x) =

∆∫
0

ϕ(σ) dσ + (−1)j x
æk

∆∫
0

ϕ1(σ)|ϕ(σ)| dσ

(j = 1, 2),

(34)
where

ϕ1(σ) =
√

(1− α−1
1 ϕ′(σ))(1− α−1

2 ϕ′(σ)). (35)

Further investigation is based on a Lyapunov–type
lemma and on Yakubovich–Kalman frequency–domain
theorem.
Lemma. Let a0, a ∈ R+, ε, η, τ ∈ R+/{0}, æ 6= 0,

k ∈ N. Let ϕ(σ) be a ∆-periodic continuously differ-
entiable function, satisfying conditions alike (2), (3),
and functions σ(t), W (t) be continuously differen-
tiable on R+. Suppose the following requirements are
fulfilled:
1)

dW (t)
dt + æϕ(σ(t))dσ(t)

dt + ε(dσ(t)
dt )2+

+ηϕ2(σ(t)) + τϕ2
1(σ(t))(dσ(t)

dt )2 ≤ 0,
(36)

2) a + a0 = 1;
3) the matrices T (W (0)), where

Tj(x) =

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

ε,
aærj(k,æ,x)

2 , 0
aærj(k,æ,x)

2 , η,
a0ær0j(k,æ,x)

2

0,
a0ær0j(k,æ,x)

2 , τ

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
,

(37)
are positive definite (j = 1, 2).
4) a value t̄ > 0 is such that W (t̄) ≥ 0.
Then

|σ(t̄)− σ(0)| 6= k∆. (38)

Proof. If follows from the requirement 3) of the lemma
that matrices Tj(W (0) + ε0) (j = 1, 2), where ε0 is



a small positive number, are positive definite. Let us
define the functions

Fj(σ) = ϕ(σ)− rj |ϕ(σ)|,
Ψj(σ) = ϕ(σ)− r0j |ϕ(σ)|ϕ1(σ), (39)

where

rj = rj(k, æ,W (0) + ε0),
r0j = r0j(k, æ,W (0) + ε0) (j = 1, 2), (40)

and Lyapunov–type functions

Vj(t) = W (t)+æ(a

σ(t)∫

σ(0)

Fj(σ) dσ+a0

σ(t)∫

σ(0)

Ψj(σ) dσ).

(41)
Then

dVj

dt
=

dW (t)
dt

+ æ (aFj(σ(t)) + a0Ψj(σ(t))σ̇(t)) .

(42)
In virtue of requirement 1) of the lemma we have

dVj

dt ≤ −εσ̇2 − τ(ϕ1(σ)σ̇)2 − ηϕ2(σ(t))−
−æarj |ϕ(σ)|σ̇ − æa0r0j |ϕ(σ)|ϕ1(σ)σ̇.

(43)

Since matrices Tj(W (0) + ε0) (j = 1, 2) are positive
definite it follows that

dVj(t)
dt

≤ 0 (j = 1, 2), (44)

and consequently for all t ∈ R+

Vj(t) ≤ Vj(0) = W (0). (45)

Suppose now that σ(t̄) = σ(0) + k∆. Then

V1(t̄) = W (t̄) + kæ
∆∫
0

(aF1(σ) + a1Ψ1(σ))dσ.

(46)
But

∆∫

0

F1(σ) dσ =

∆∫

0

Ψ1(σ) dσ =
1

æk
(W (0) + ε0).

(47)
Thus

V1(t̄) = W (t̄) + W (0) + ε0 (48)

and

V1(t̄) > W (0), (49)

which contradicts (45).
If we suppose that σ(t̄) = σ(0) − k∆ then by analo-

gous reasoning we shall come to the conclusion that

V2(t̄) > W (0), (50)

which also contradicts (45). So lemma is proved.

Further we shall use the proof of theorem 1. So con-
sider the quadratic form G0(y, ξ) of y ∈ Rm+1 and
ξ ∈ R, such that

G(y, ξ) = 2y∗H(Py + Lξ) + G0(y, ξ). (51)

Here H = H∗ is a ((m + 1)× (m + 1)) - matrix.
Let the values of parameters ε, η, æ and τ in G(y, ξ)

be such that condition 1) of the theorem 1 is true. Then
there exists a real symmetric matrix H such that the
inequality

G(y, ξ) ≤ 0 (∀ y ∈ Rm+1,∀ ξ ∈ R) (52)

is true.
Theorem 3. Let σ(0) ∈ (σ1, σ2) with ϕ(σ1) =

ϕ(σ2) = 0 and |σ1 − σ2| < ∆. Suppose there ex-
ist such æ 6= 0, positive numbers ε, η, τ , nonnegative
numbers a, a0 and natural k that the following condi-
tions are fulfilled:
1) the condition 1) of the theorem 1 is true;
2) a + a0 = 1;
3) matrices

T1 · (sign(æ)(y∗(0)Hy(0)−æ
∫ ∆j

σ(0)

ϕ(σ)dσ)), (53)

where j=1,2, ∆1 = σ1, ∆2 = σ1+∆, if æϕ(σ(0)) < 0,
and ∆1 = σ2, ∆2 = σ2 − ∆, if æϕ(σ(0)) > 0, are
positive definite for a certain matrix H = H∗ satisfy-
ing (52)
(T1(x) is defined in the text of the lemma).
Then for any solution of (1) with initial data

(z(0), σ(0)) the estimate

|σ(t)− σ(0)| < (k + 1)∆ (54)

is true for all t ∈ R+.

Proof. Consider the solution with the initial data
(z(0), σ(0)). We shall use the lemma here. Let

W (t) = y∗(t)Hy(t). (55)

Then

dW (t)
dt

= 2y∗(t)H(Qy(t) + Lξ(t)), (56)



where the derivative is calculated in virtue of sys-
tem (10). We have from (52)

dW (t)
dt ≤ −G0(y(t), ξ(t)) =

= −æϕ(σ(t))σ̇(t)− εσ̇2(t)− ηϕ2(σ(t))−
−τ σ̇2(t)(1− α−1

1 ϕ′(σ(t))) · (1− α−1
2 ϕ′(σ(t))).

(57)
So condition 1) of the lemma is fulfilled for any solu-

tion of (1). Suppose that for a certain moment t = t̂ we
have either σ(t̂) = ∆1 or σ(t̂) = ∆2. Let us consider
then the solution with z(0) = z(t̂) and σ(0) = σ(t̂)
and denote it by (ẑ(t), σ̂(t)). Let us also use the nota-
tions

ŷ =
∥∥∥∥

ẑ
ϕ(σ̂)

∥∥∥∥ , (58)

Ŵ (t) = ŷ∗(t)Hŷ(t). (59)

Note that ϕ(σ̂(0)) = 0. Suppose that
σ̂(t̄) = σ̂(0)± k∆. Then ϕ(σ̂(t̄)) = 0.
Let

H =
∣∣∣∣
∣∣∣∣
H0 h
hT α

∣∣∣∣
∣∣∣∣ , (60)

where H0 = H∗
0 is a m×m-matrix. Then

Ŵ (t̄) = ẑ∗(t̄)H0ẑ(t̄). It is easy to demonstrate
that Ŵ (t̄) ≥ 0 [Smirnova, Shepeljavyi and Utina,
2003]. Note that

0 ≤ Ŵ (0) = W (t̂) ≤ W (0)− æ
∫ ∆j

σ(0)

ϕ(σ)dσ. (61)

Condition 3) of theorem 3 guarantees that condition 3)
of the lemma is true. It follows from the fact that
W (t̂) ≥ 0. So all the conditions of the lemma are ful-
filled for the solution (ẑ(t), σ̂(t)) and

σ̂(0)− k∆ < σ̂(t̄) < σ̂(0) + k∆. (62)

It follows then that for the solution (z(t), σ(t)) of (1)
the estimate

|σ(t)− σ(0)| < (k + 1)∆ (63)

is true for all t ∈ R+. Theorem 3 is proved.

4 Conclusions
In this paper a certain generalization of periodic

Lyapunov-type functions and sequences, traditionally
used for phase control systems, is offered. With the
help of this generalization and Yakubovich-Kalman
frequency-domain theorem new frequency-domain cri-
teria with many varying parameters are obtained. The
latter give the opportunity to improve the estimates of
stability regions for concrete phase systems.
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