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Abstract 
This paper deals with the problem of a precise 

control for dynamic object with a nonstationary 
mathematical model. A well – known approach on 
the base of model reference adaptive system theory 
is used. A new algorithm of adaptation is proposed 
for such class of systems. An advantage of the algo-
rithm is independence of its operation from inten-
sity and spectral structure of input actions. It makes 
possible to be sure in dynamic accuracy of such 
systems. 
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1   Introduction 
From the origin of model reference adaptive sys-

tems (MRAS) research [Parks, 1966; Zemlyakov 
and Rutkovsky, 1967; Landau, 1969] it is possible 
to indicate up to hundred monographs and thou-
sands papers on this subject. For such an attention 
reasons are in a constructability of the task state-
ment and in a beauty of mathematical tools. Really, 
the reference model permits to know the motion to 
tend to it. Hence it is possible to apply analogs of 
the feedback principle what is typical for nature and 
human activities. Mathematical models (MM) of 
MRAS are principally multiconnected nonlinear 
nonstationary ones. The beauty of the MRAS de-
signing is contained for example in the fact that the 
Lyapunov direct method is used not only for a sys-
tem stability analysis but for synthesis of  MRAS 
operating algorithms too [Parks, 1966; Zemlyakov 
and Rutkovsky, 1967; Landau, 1969]. 

But in spite of intensive theoretical MRAS devel-
opments practical applying of such systems is not 
so impressive. Reasons of such a fact authors attend 
in a line of essential MRAS deficiencies. Next posi-

tions could be referred to such deficiencies as de-
pendence of the MRAS dynamic accuracy from: 

1) an intensity and a spectral structure of input 
actions; 

2) level of parametric and coordinate distur-
bances. 

All these facts trend to a small predicted dynamic 
accuracy of the MRAS that naturally cannot satisfy 
designers of real systems. 

On the other hand modern and perspective dy-
namic control objects, being operated in conditions 
of parametric and coordinate disturbance uncertain-
ties, more and more demand dynamic accuracy to 
be closed to precise one. 

Qualitatively under precise control in this work 
we understand   the motion of the system with prac-
tically null (or preassigned) displacement with re-
spect to some prescribed desired motion. 

In this paper a new algorithm for MRAS operat-
ing is proposed. The algorithm: 

1) removes the dependence of the MRAS dy-
namic accuracy from the intensity and the spectral 
structure of input actions; 

2) makes possible to get predicted information 
about MRAS dynamic accuracy. 

And for this algorithm synthesis it is not required 
an assumption about the quasistationarity of the 
object functioning regime. 

 
 

2   Problem statement 
Consider an object or a system with MM in the 

form 
 

     0 0( ( )) ( ( )) ( )

( ) ,

d A A t B B t g t
dt

f t L

ϕ ϕ+ + ∆ = + ∆ +

+ +
     (1) 

 
where  t is time; 0t is a starting point for the sys-
tem with MM (1); 0t t≥ ; ;nRϕ ∈  ( ) mg t R∈ ; 



( ) nf t R∈ ; nL R∈ . Here  ,ϕ ( ), ( )g t f t  are state, 
control and disturbance vectors respectively. Matri-
ces ( ),A t∆ ( )B t∆  are unknown parametric distur-
bances. Components of vector  L  are intended for 
compensation of coordinate and parametric distur-
bances. Vectors ( )tϕ ϕ= , ( )g t  are assumed to be 
available for  measurement; matrices 0A  and 0B  
are known; ( 0A− ) is a Hurwitz matrix; elements of 
matrices ( ), ( )A t B t∆ ∆  and components of vec-
tors ( ), ( )g t f t  are continuously differentiable 
functions. 

Let us rewrite the equation (1) in the form 
 

  0 0 ( ) ( )d A B g t d t L
dt
ϕ ϕ+ = + + ,              (2) 

 
where ( ) ( ) ( ) ( ) ( )d t A t B t g t f tϕ= −∆ + ∆ +  is the 
vector-function with continuously differentiable 
components which are not available for measure-
ment. 

It is required to synthesize the algorithms of the 
vector L  components tuning from the condition of 
the disturbance vector ( )d t  compensation. 

The task will be solved with the condition that 
components ( ) ( 1, )id t i n=  values of the vector  

( ) ( ( ))id t d t=  are not bounded but velocities of 

their changing are bounded, that is 0( ) ,i i
d d t
dt

µ≤  

0 constiµ =  and numbers 0iµ  are known and can be 
quite big. 

 
 

3   The task solution on the base of model 
 reference adaptive approach 

Let us consider MM of desirable system motion 
in the form  

 

         0 0 ( )M
M

d
A B g t

dt
ϕ

ϕ+ =                    (3) 

where  n
M Rϕ ∈ . 

A dynamic link with the ММ (3) we accept as the 
reference model. 

We will try to synthesize the algorithm for tuning 
of L -vector components from the condition that the 
motion ( )tϕ ϕ=  asymptotically converges to the 
motion ( )M M tϕ ϕ=  of the system with the ММ  (3) 
independently from an intensity and a spectral 
structure of input actions. In this case it is possible 
to get predicted information about MRAS dynamic 
accuracy. 

It is interesting to note that traditional adaptation 
algorithms of MRAS [Parks, 1966; Zemlyakov and 
Rutkovsky, 1967; Landau, 1969] are not provided 
asymptotical convergence of the system motion to 

the reference model motion if the input disturbance 
vector ( )f t  is not zero. Here we try to solve the 
problem independently whether input vectors 

( ), ( )g t f t  are zero or not. 
With notation , ( ) ,M y d t Lε ϕ ϕ= − = +  

,d L
dt

ψ=  ( ) ( ),d d t t
dt

µ=  from equations (2) and 

(3) we get the system 
 

          0 , ( ) .d dA y y t
dt dt
ε ε µ ψ+ = = +          (4) 

 
Here the term ( , )tψ ψ ε=  is a looking for an ad-

aptation algorithm. 
Let us introduce into consideration the vector x  

that is defined by the equation 
 

d x x
dt

τ ε+ =            (5) 

 
where const 0τ = >  is a prescribed small value. At 
first the system (4) and (5) will be considered with 
the condition 

 
0τ = .                     (6) 

 
Then the system (4) and (5) could be rewrite in 

the form 
 

  0 , ( )d dx A x y y t
dt dt

µ ψ+ = = + .          (7) 

 
Let us consider the motion  

 
0, 0x y≡ ≡                      (8) 

 
of the system  (7)  and synthesize the algorithm for 
the vector ψ  tuning from the condition that the 
motion of the system (7) ( )x x t= , ( )y y t=  is as-
ymptotically converges to the motion  (8). For this 
goal we take the Lyapunov function in the form 
[Petrov, Rutkovsky, and Zemlyakov, 1980] 

 
    ( , ) ( )T TV x y x Px y yκ= +            (9) 

 
where const 0, Pκ = >  is  a positive  definite ma-
trix to be defined by the Lyapunov equality  

0 0( )TA P PA Q− + = , Q  is a prescribed negative defi-
nite matrix.  

The derivative  ( , )dV x y
dt

 with respect to the sys-

tem (7) is defined by an equation 
 

      ( , ) ( ) 2 [ ( ) ],T TdV x y x Qx y t
dt

κ κσ µ ψ= + + +   (10) 



 
where   Pxσ = . 

Let us synthesize the algorithm for the vector ψ  

tuning from the condition ( , ) 0dV x y
dt

< .  For this 

goal we consider equality 
 

( )Ksign yψ κσ= − − ,             (11) 
 

where K  is a diagonal  matrix 
1 2( , , , )nK diag k k k= …  and ( )sign y  is the vector 

1 2[ ( )] [ ( ) ( ) ( )]T
nsign y sign y sign y sign y= … .   

           
With respect to (11) the equality (10) takes the 

form 
 

   ( , ) ( ) 2 ( )TTdV x y x Qx y t
dt

κ ρ= − ,      (12) 

 
where 1 2( ),T

ny y y y= …  

1 2[ ( )] [ ( ) ( ) ( )],T
nt t t tρ ρ ρ ρ= …     

( ) ( ) ( )i i i it k t sign yρ µ= −    ( 1, 2, , )i n= … . 
 
Under condition  

 
0i ik µ>          (13) 

 
it takes place an inequalities ( ) 0i tρ > . Then from 
(9) and (12) we get inequalities 

 

( , )( , ) 0, 0dV x yV x y
dt

> <        (14) 

 
The inequalities (14) garantee asymptotical con-

vergence  of the system (7) motion with the adapta-
tion algorithm (11) to the motion (8). These ine-
qualities were synthesized independently of a kind 
of input actions and coordinate or parametric dis-
turbances entering in the vector ( )d t  (of course 
with the condition (13) to be valid). But it is neces-
sary to note that the system (7) with the adaptation 
algorithm (11) belongs to the class of systems with 
a discontinuous right part of the MM [Emelyanov, 
1967]. In such system it is possible of sliding modes 
arising. 

Let us rewrite the system (7) with the adaptation 
algorithm (11) in the form 

 

       
0 ,

( ) ( ).

d x A x y
dt
d y t Ksign y
dt

µ κσ

+ =

= − −
        (15) 

 

From the system (15) it is evident that sliding 
modes in a phase space { },x y  could arise  on one 
or several of discontinuity hyperplanes 

0 ( 1, 2,..., )iy i n= = . Let it takes place and during 
of a time interval T∆  on hyperplanes,  for example 

0 ( 1, 2,..., ),jy j m m n= = ≤ , the system is mov-
ing in sliding modes. Then for this time interval T∆  
the equalities 0, 0j jy y= =�  ( 1, 2,..., ),j m=  
m n≤  take place [Emelyanov, 1967; Utkin, 1992]. 
During the time interval T∆  components of a vec-
tor  1 2( , ,..., )T

l l nz y y y+ +=  can take zero values but 
a set of such points has a null measure. It means 
that the representative point in the phase space 
penetrates these hyperplanes not to delay on them. 
Then the vector y on this time interval T∆  has  m  
null components which could not break inequalities 
(14). 

Let us introduce the MM of the system (15) in the 
form 

 
2

02

0

( ) ( ),

,

d x dxA Px R t sign S
dtdt

dxS A x
dt

κ+ + = −

= +
     (16) 

 
where 1( ) ( ( ), ... , ( ))nR t diag t tρ ρ=  is the diagonal 
matrix.  

We can state that in the section 3 it is proved that 
the motion of the system with the MM (16) asymp-
totically converges to the motion 

 
0, 0x x≡ ≡� .       (17) 

 
4   Analysis of the adaptive system motion  

Results of the section 3 were obtained under con-
dition that the vector ( )sign y  is available to meas-
uring but it was not told how to get such informa-
tion. Really, if to suppose that the vector y  is 
measured then the necessity in adaptation is elimi-
nated. It follows from the notation ( )y d t L= + , 
where the vector of coordinate and parametric dis-
turbances ( )d t  is not measured. From the MM (4) it 
is evident that the vector y  can be got as the equal-

ity 0
dy A
dt
ε ε= +  but, according to the problem 

statement, the vector  d
dt
ε   is not measured. Just to 

solve this contradiction the equation (5) was intro-

duced. In this case the vector dx
dt

 can be measured. 

Then it is possible to suppose that vectors x  and 
dx
dt

 will be closed to vectors  ε  and d
dt
ε  respec-



tively if the value τ  in (5) is small enough. In fact 
the equation (5) was introduced for the goal of  the  

vector   d
dt
ε   estimation. 

So for more constructive of the task’s solution it 
is necessary to refuse from the condition (6) and to 
assume the equality  

 
         0 0, const 0τ τ τ= = >                   (18) 

 
where 0τ  is a small but constant value. 

Under the condition (18) the system of equations 
(4) and (5) could be rewrite in the form 

 
2

0 0 0 02 ( ) ,

( ) ,

d x dxE A A x y
dtdt

dy t
dt

τ τ

µ ψ

+ + + =

= +
        (19) 

 
where E  is a unit matrix. 

Now in the MM (19) we leave the adaptation al-
gorithm of the form (11) 

 
      ( )Px Ksign Sψ κ= − −  ,       (20) 

 
where 

0 .dxS A x
dt

= +  As vectors  x  and dx
dt

 are now 

available to measuring then the vectors S  and 
( )sign S  are  available to measuring too. So the 

adaptation algorithm (20) is realizable in the system 
with the MM (19). 

Let us represent the ММ (19) with the adaptation 
algorithm (20) in the form 

 

  

3 2

0 0 03 2

0

( )

( ) ( ).

d x d xE A
dt dt

dxA Px R t Sign S
dt

τ τ

κ

+ + +

+ + = −
           (21) 

 
Naturally under the condition 0 0τ =  the MM 

(16) and the MM (21) are coincided. 
It is possible to suppose that motions of systems 

with MM (16) and (21) will be closed if the number 
0τ  is small enough. Simulation confirms this fact. 

But some principle questions arise that require ana-
lytical solutions. For example, such questions are: 
1) It was proved that the motion of the system with 
the MM (16) asymptotically converges to the mo-
tion (17). Is there an interval for values of τ  

 
  0 00 , const 0τ τ τ< ≤ = >                 (22) 

 
at which the motion of the system with the MM 
(21) converges to the motion 

 

       0, 0, 0 ?x x x≡ ≡ ≡� ��                      (23) 
 
We can say before that such an interval is not ex-

isted for a common case of the matrix ( )R t ele-
ments changing in the MM (16) that are restricted 
only by inequalities 

 

     
max min

min

( ) ,

const > 0 ( 1,..., ).
i i i

i

t

i n

ρ ρ ρ

ρ

≥ ≥

= =
          (24) 

 
2) Let such an interval for possible values τ  (22) 

was not found. Is there in the phase space such a 
domain that the motion of the system with MM (21) 
converges to this domain and this domain includes 
the motion (23)? 

We can say before that such domain exists. But if 
such a domain exists then it could be small enough 
and the solution of our task at 0τ ≠  could be con-
structive enough. In this case  the system with MM 
(21) could be quite acceptable for practical applica-
tion.       

3) Let such a convergence domain exists for the 
system with the MM (21). How we can estimate 
“dimensions” of such a domain? 

In this work we will answer these questions with 
the help of a simple but enough adequate example. 

 
 

5   Analysis of the adaptive nonstationary system 
motion on the base of simple example 

Consider a simple example of the MM for a sys-
tem in the form (16) 

 

    0 ( ) ( )dx a x t sign x
dt

ρ+ = − ,                  (25) 

 
where  x  is a scalar coordinate, 0 const 0a = > , 

 
       max min min( ) , const 0tρ ρ ρ ρ≥ ≥ = > .      (26) 
 
It is evident that the motion of the system with 

the MM (25) converges to the motion 
 

     0x ≡            (27) 
 

from any initial point 0 0( )x t x=  for 0t t> . Never-
theless to illustrate above theory we will show this 
fact with a method that was used before. 

Let us choose for the system with the MM (25) 
the Lyapunov function in the form 

 

  2
1

1( )
2

V x xκ≡         (28) 

 
where const 0κ = > . 



A derivative 1( )dV x
dt

 with respect to the MM (25) 

could be derived as the expression 
 

     21
0

( )
( ( ) )

dV x
a x t x

dt
κ ρ= − + .        (29) 

 
A sliding mode on the line 0x =  in the plane 

{ , }x t  does not contradict to the fact that the motion 
( )x t  converges to the motion (27). 
Now we consider the system with a MM that is 

analogous  to  the MM (21) 
 

2

02 ( ) ( )d x dx a x t sign x
dtdt

τ ρ+ + = − .       (30) 

 
Let us rewrite the MM (30) in the form 
 

1 2

2 0 1 2 1

,
1 ( ( ) ( ))

x x

x a x x t Sign xρ
τ

=

= − + +

�

�
       (31) 

or in a matrix form 
 

( , )x Ax t xµ= +�         (32) 

where  ( )1 2x x xΤ = , 
0

0 1
1A a

τ τ

 
 =  − − 
 

,   

1

0
( , ) ( ) ( )
t x t sign x

µ ρ
τ

 
 =  − 
 

. 

Now we will formulate the set of enough obvi-
ous statements. 

Statement 1: During the motion of the system 
with the MM (30) a sliding mode on the line 1 0x =  

2( 0)x ≠  in a phase plane 1 2{ , }x x  does not arise. 
Statement 2: There are nonstationary functions 
( )tρ in the MM (31) that the motion 
 

1 20, 0x x= =                         (33) 
 

is unstable. 
Proof: Consider the Lyapunov function in the 

form 
 

2 ( ) ( )TV x x Pxκ= ,                    (34) 
 

where const 0, Pκ = >  is  a positive  definite ma-
trix to be defined by the Lyapunov equality  

0 0( )TA P PA Q− + = , Q  is a prescribed negative 
definite matrix. 

A derivative  ( )dV x
dt

 according to the system (32) 

is defined by the equation 

   2
2 1

( ) ( )( ) 2 ( )TdV x tx Qx sign x
dt

ρκ σ
τ

= − ,     (35) 

 
where 1 2( ) ( , ), ( ) ( , 1, 2)T

ijPx P p i jσ σ= = = . 
Let us take the function ( )tρ  in the form 

 
    max

1 2( ) ( ) ( )t sign x signρ ρ σ= .           (36) 
 

Then the equation (35) takes the form 

max
2

2
( ) ( ) 2TdV x x Qx

dt
ρκ σ
τ

= + ,          (37) 

 
where      2 21 1 22 2 21 22, 0, 0p x p x p pσ = + ≥ > . 
 

It is evident that on the phase plane 1 2{ , }x x   in a 
small neighborhood of the point (33) a positive term 
in the equality (37) exceeds a negative one. So there 
is some domain including the point (33) that ine-
qualities  

         2
2

( )
( ) 0, 0

dV x
V x

dt
> >                 (38) 

 
take place for any point of this domain. According 
to Lyapunov’s theorem about an instability, ine-
qualities (38) prove the statement 2 

Statement 3: For the system with the MM (32) 
there is a convergence domain 1 2( , )G x x . 

Proof: Qualitatively, the proof of the Statement 3 
follows from the proof of the Statement 2. Really, 
from the equation (37) it follows that in a small 
neighborhood of the point (33) there exists some 
domain including the point (33) that inequalities  
(38) take places but for points that are displaced in a 
respectively distant position the inequalities 
 

     2
2

( )
( ) 0, 0

dV x
V x

dt
> <         (39) 

 
take places. 

But such a qualitative argument is valid for the 
concrete function ( )tρ  in the form (36) and the 
concrete Lyapunov function (34). For other nonsta-
tionarity functions ( )tρ  the motion (33) of the sys-
tem with the MM (30) could be stable. 

Naturally, for a practice applying of the sinthe-
sized adaptive algorithm it is necessary to propose a 
method for “dimensions” estimation of a conver-
gence domain. In [Zemlyakov  and Danilova, 2008] 
such convergence domain 1 2( , )G x x  for the system 
with MM (32) was obtained in the form of a poly-
gon presented in figure 1. This polygon takes place 

at 0

4
a

τ < . 



 
2x

1x

A  

C  

D  E

F

max

01 a
τρ

τ−
 

max

01 a
τρ

τ
−

−
 

B  
max

01 a
ρ

τ−
 

max

01 a
ρ

τ
−

−
 

1 2( , )G x x  

(0,0)

 
Figure 1.  Convergence domain 
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