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Abstract

We investigate the effects of growth process on the
synchronization behavior of a dynamical network com-
posed by coupled Logistic Maps. In particular, we as-
sume that the growth process follows the wellknown
Barabási-Albert model. In this context, we interpret the
addition and preferential attachment of a new node as
a discrete event where the network structure switches
to a new configuration. We propose to add a new node
iteratively slow in order to let the transitory effects die
out. We examine then how the synchronization crite-
rion for a dynamical network with fixed structure could
be applied to the case in which this network grows. Our
results show that the stability of the synchronized solu-
tion is preserved for the addition of only a limited num-
ber of nodes. Furthermore, the number of added nodes
for which the stability is preserved directly depends on
the structure and size of the initial structure of the net-
work.
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1 Introduction

A Dynamical Network (DN) is composed by a set of
coupled dynamical systems called nodes. The coupling
between any pair on nodes is represanted by and edge,
and the pattern of the couplings is called the network
structure. DN have attracted tremendous attenction in
many fields of science mainly due to their potential
applications to model systems in nature such as the
Internet, the World Wide Web, fod webs, etc ([New-
man (2010)]). One of the most significant phenomena
in DN, is the synchronization behavior of dynamical
nodes. Recent research have been focus on establish
synchronization criteria in DN networks with a given
fixed structure ([Boccaletti et al. (2008)]). However, in

order to model a more realistic situation, it is important
to take into account that real-world networks acutally
evolves through different change processes like the ad-
dition or deletion of nodes and links.
Network evolution has been extensively addressed

from the framework of graph theory. In this context, an
evolution model consists of a set of structural change
rules, which are repeated iteratively in order to emu-
late the network evolution. One of the first and more
significant evolution model, designed to describe the
way in which real-world networks evolves, is the so-
called Barabási-Albert (BA) model ([Barabási and Al-
bert (1999)]), which argued that there are two generic
aspects of real-world networks, which are: 1) growth,
at each iteration a new node is added to the network,
and 2) preferential attachment, the new node is more
likely to connect to an important node that to a less con-
nected one. After repeat these rules a given number of
iterations, we get a network where the vast majority of
nodes will have few connections while some few nodes
will have many connections. The network with this
structural effect are called scale-free networks. How-
ever, BA model only focus on the strutural features
of the network and does not consider dynamical as-
pects of the collective behavior. In this sense, the
authors in ([Jin Fan et al. (2004)]), have been pro-
posed a synchronization-optimal growth model, where
the BA preferential attachement rule is replaced by a
rule where each new node conection is such that it op-
timize the synchornizability of the network. The model
in ([Jin Fan et al. (2004)]) succeeds in construct a
network with the scale-free feature that achieves syn-
chronization; nevertheless, with this model we must to
know the entire network dynamical state in order to se-
lect the new node connections.
On the other hand, when we model the structural

growth in a DN, we can not use the synchronization
criteria used for the case of DN with a fixed structure.
This represent a challenging problem that has attracted
the atention of current researchs, some of which, have
been tackle this complication from the framework of



Siscrete Event Systems. This formalism allow us to in-
terpret any change process in the network structure as
a discrete event that causes a transition from one net-
work structure to another. This discrete event occurs
while the nodes are still evolving accordign to their dy-
namical nature. Discrete Event Systems permit us also
to distinguich between to different dynamics: the time-
driven and the event-driven dynamics. The first one is
refered to systems whose dynamical states changes as
time changes. In the context of DN, this kind of dy-
namics correspond to the evolution of nodes. On the
contrary, for event-driven dynamics the system changes
only at certain points in time through instantaneous
transitions, which we can associate as an event. In the
case of DN this corresponds to the structural changes
on the network. Note that DN whit evolving structure
combine time-driven and event-driven dynamics, so it
can be seen as an hybrid dynamical system.

In ([D.J Stilwell et al. (2006)]), the authors have tackle
this problem from the framework of switching systems.
They considers a set of DN whit different structure but
whit the same type of dynamical nodes and the same
number of nodes. Then the network switchs its struc-
ture to a predefined one thought a switching signal. An
important result is that if the switching is fast enough,
then an average model can be used, and the synchro-
nization can be achieve if the switching is fast enough.
On the contrary, in ([David Hill et al. (2010)]) the
authors have shown that if the average dwell time of
the current structure is slow, then it is posible also to
achieve syncronization. However, in these works the
number of nodes are always fixed, that is, it is no al-
lowed to the DN to growth, which, as was pointed out
in BA model, is an important procees in the real-world
network evolution.

In this contribution, we intepreted the BA model from
the point of view of Discrete Event Systems. To do that,
we define as an event the addition of a new node and its
preferential attachment. In particular we consider the
case of a DN composed by discrete-time systems called
Logistic Maps, and we model the network evolution
as in the BA model. We propose to add a new node
iteratively slow in order to let the dynamical transitions
of the nodes. We observe that if the dwell time of the
new node is large enough, the synchronized behavior
can be achieved when we add a few number of nodes.

This paper is dived as follows. On the second sec-
tion we resume significant preliminaries for this work,
in particular, we review the synchronization criterion
for a discrete-time dynamical network with fixed struc-
ture and the BA model of network growth. On sec-
tion tree we expose our interpretation of the BA model
for dynamical network since the discrete event system
approach, and in section four we analize how to use
the synchronization criterion for a dynamical network
with fixed structure, to the case a growing dynamical
networks. On section five we show our numerical re-
sults for the case of a DN where each node is a Logistic
Map and where the structure evolve accordign to the

BA model. Finally we present the conclusions for this
work.

2 Preliminaries

2.1 Discrete-time dynamical network

For a network ofN identical discrete-time systems,
lineally and bidirectionally coupled with unweighted
edges, the dynamical evolution of each node is given
by

xk+1
i = f(xk

i ) + c

N
∑

j=1

aijf(x
k
j ), i = 1, . . . , N (1)

wherexk
i is the state variable of thei-th node at the

discrete-time instantk ∈ Z. The mapf(·) describes the
dynamics of a single node isolated from the network.
For the remainder of this contribution, we consider that
each node is a Logistic Map:

f(xk) = rxk(1− xk) (2)

with r = 3.9 andxk
i ∈ R. The variablec ∈ R repre-

sents the uniform coupling strength, and the coupling
matrix A = {aij} ∈ R

N×N describes the network
structure as follows: if thei-th andj-th node are con-
nected, the entriesaij = aji are set to one; if there is
no connection between them, the entries are set to zero
(aij = aji = 0). To complete the matrix, the diagonal
entries are determine in the following manner:

aii = −

N
∑

j=1

aij = −

N
∑

i=1

aij = −di (3)

wheredi is the node degree of thei-th node.
By construction, the connectivity in the network is dif-

fusive, that is, all sums by row or column ofA are zero.
Further, if the network is connected in the sense that no
node is isolated from the network, then the coupling
matrix is symmetric, irreducible, and its eigenvalues
(λi) can be ordered as:

0 = λ1 > λ2 ≥ . . . ≥ λN (4)

For a dynamical network, complete synchronization is
defined as the phenomena in which the evolution of all
its nodes moves at unison. In an other words, a dynam-
ical network is said to (asymptotically) achieve com-
plete synchronization if ask → ∞ the states of each
node in the network tend to the synchronized solution

xk
1 = xk

2 = . . . = xk
N (5)



From a stability analysis of the network dynamics lin-
earized around the synchronized solution, diverse syn-
chronization criteria can be derived (see for example
[Arenas et al. (2008)]). In particular, for a dynam-
ical network of discrete-time systems, a synchroniza-
tion criterion was proposed in ([Li and Chen (2003)]).
In that work, for a dynamical network of identical
discrete-time systems with fixed structure and diffu-
sive coupling, it was shown that the synchronized solu-
tion (5) is exponentially stable if the uniform coupling
strength satisfies

1− e−hmax

|λ2|
< c <

1 + e−hmax

|λN |
(6)

whereλ2 andλN are the biggest and smallest nonzero
eigenvalue ofA, respectively; whilehmax is the largest
Lyapunov exponent of an isolated node, which, for the
case of a Logistic Map we havehmax = ln(2).
An important question related to the stability of the

synchronized solution is whether or not there is a pos-
itive coupling function such that the criterion in (6) is
satisfied. To this end, an alternative version of the cri-
terion can be used. Consider the ratioR = −λ2

λ2−λN

,
which measure the normalized distance of the eigen-
spectrum ofA. Then a positive coupling strength exist
if the ratio satisfies

1

R
<

2e−hmax

1− e−hmax

(7)

For the dynamical network of Logistic Maps consider
in this contribution, the condition becomes1

R
< 2.

Notice that the synchronization criteria (6) and (7) are
only valid for a static network structure, and in general,
can not be consider a valid criteria while the structure
of the network evolves. In particular, in the case of
network growth, this is further complicated by the in-
crement in the dimension ofA, and the change in its
eigenvalues after each growth event. However, under
the conditions that each growth event results in a net-
work of identical nodes with diffusive structure, and
that the time between growth events is large enough as
to allow for the node dynamics to reach their steady-
state behavior, one can argue that the synchronization
conditions (6) and (7) can in fact be use to determine
the stability of the synchronized solution on growing
networks.
We assume that the growth events in the network are

described by the scale-free model proposed by Barabsi
and Albert ([Barabási and Albert (1999)]), which is de-
scribed in the following subsection.

2.2 The BA model of network growth

One of the first and more significant network models
designed to describe the way in which a real-world net-
work grows is the so-called scale-free network model

proposed by Barabsi and Albert in 1999 ([Newman
(2010)]), which states that as the network grows, it does
so following a preferential attachment rule, that is, a
new node in the network is more likely to connect to
an important node that to a less connected one. In what
follows we briefly describe the BA model network con-
struction algorithm:

The BA model consists of two steps:

The first step is simply calledGrowth.

1. Starting with a small number (m0) of nodes.
Then, at every iteration of the model (or growth
event) a new node is added to the network, and it
is connected tom (≤ m0) of the nodes already
present in the network.

The second step tells us to which of the nodes already
existing in the network our new node will be connected.
The choice is made favoring connections to the nodes
with the largest number of connections, for that reason
is calledPreferential attachment.

2. For each new node, say theq-th node, them nodes
to which it will be connected are selected from the
nodes already in the network through a random
process where the probability that the new node
connects to thej-th node is given by

Πq↔j =
dj

∑N

l=0 dl
(8)

These two steps are iterated until the network has
grown to the desired number of nodes, sayN , with
N = m0 + σ whereσ is the number of iteration of
the construction algorithm, in other words, the number
of growth events that lead to a network of sizeN .

A particularly significant aspect of the BA network
model is that for a sufficiently large number of nodes,
the statistical distribution of the node degrees of the re-
sulting network is well approximated by a power-law
distribution of the formP (d) ∼ d−3, which remains
practically unchanged for larger number nodes, that is,
this feature of the topology is independent of size; this
is the scale-free feature that gives name to the model.

In this contribution, we investigate the effect of the
growth events described by the BA model on the sta-
bility of the synchronized state of the resulting DN. In
the following section, we propose an interpretation of
the BA model as a Discrete Event System where the
growth events result on changes in the dynamical de-
scription of the network. Then, we state the synchro-
nization problem for the growing DN as the stability
preservation of the synchronized solution for the result-
ing network after each growth event.



3 Interpretation of the BA model for dynamical
network growth

We start with a network composed by a small num-
ber (m0) of Logistic Maps connected in a fully cou-
pled structure. Rewriting the dynamical description (1)
of our initial network in vector form we have

X
k+1,0 = F 0(Xk,0) + cA0F 0(Xk,0) (9)

whereXk,0 = [xk,0
1 , . . . , xk,0

m0
]⊤ ∈ R

m0 ; F 0(Xk,0) =

[f(xk,0
1 ), . . . , f(xk,0

m0
)]⊤ ∈ R

m0 ; and the initial cou-
pling matrix has the form

A0 =











−m0 + 1 1 . . . 1
1 −m0 + 1 . . . 1
...

...
.. .

...
1 1 . . . −m0 + 1











(10)

By construction, the eigenspectrum ofA0 is λ1 = 0,
andλj = −m0 for j = 2, ...,m0. In order to ensure
that our initial network synchronizes, we select a cou-
pling strengthc such that the criterion (6) is satisfied.
We assume that the first growth event (τ(k) = 1) oc-

cur after sufficient time has passed such that the tran-
sitory behaviors have die out (k = k0). Further we
assume that all subsequent growth events occur period-
ically such that

τ(k) =

{

0, if 0 ≤ k < k0
n, if k0 + (n− 1)T ≤ k < k0 + nT

(11)
for n = 1, 2, ...., N ; whereτ(k) is the growth event
index andT is the time period between growth events.
The initial conditions for our initial network (X0,0)

are randomly selected from[0, 1]. As discrete-time
moves along thek index, the event indexτ(k) moves
according to (11). Then, at the time instant in which the
first growth event occurs, the dynamical description of
network changes to:

X
k+1,1 = F 1(Xk,1) + cA1F 1(Xk,1)

where, according to the BA network growth model, a
new node is added into the network, this means that the
vector of state variables becomes

X
k,1 = [Xk,0, x

k,1
m0+1]

⊤ ∈ R
m0+1

The initial condition of the added Logistic Map is a
value randomly selected from[0, 1]. In a similar man-
ner,F 1(Xk,1) is the previous vector function appended
with the dynamics of the added node

F 1(Xk,1) = [F 1(Xk,0), f(xk,1
m0+1)]

⊤ ∈ R
m0+1

The coupling matrix of the network with an added node
becomes

Ã0 = φ1(A0) =

(

A0 v1
v⊤1 0

)

with v1 ∈ R
m0 a zero vector. The preferential attach-

ment step of the BA network model, becomes the ran-
dom selection of whichm entries ofv1 to change from
0 to 1, then, we have

Â0 = φ2(Ã0) =

(

A0 v̂1
v̂⊤1 0

)

where v̂1 is the zero vectorv1 with m randomly se-
lected entries as ones.
In order to have a diffusive connection in the resulting

network, the diagonal entries ofA1 are calculated from
Â0 asaii = −

∑N

j=1 aij . Then, finally we have

A1 = φ3(Â0)

Summarizing in our interpretation of the BA model,
a growth event signifies a three part process: first the
previous coupling matrix is appended with zero vector
(φ1(A0)); then, the new node is randomly coupled to
m nodes nodes (φ2 ◦φ1(A0)), and finally, the diagonal
entries are recalculated (φ3 ◦ φ2 ◦ φ1(A0)).
The dynamical description of the network including

growth events is

X
k+1,τ(k) = F τ(k)(Xk,τ(k)) + cAτ(k)F τ(k)(Xk,τ(k))

(12)
where X

k,τ(k) = [Xk,τ(k)−1, x
k,τ(k)
m0+τ(k)]

⊤ ∈

R
m0+τ(k); F τ(k)(Xk,τ(k)) =

[F τ(k)−1(Xk,τ(k)−1), f(x
k,τ(k)
m0+τ(k))]

⊤ ∈ R
m0+τ(k);

andAτ(k) = φ3 ◦ φ2 ◦ φ1(Aτ(k)−1); with τ(k) given
by equation (11).
Notice that when a growth event occurs, lets say at
k = k̄, τ(k) increases by one and the structure of the
network changes with the inclusion of the new node
as described above. However, the dynamical evolution
of the nodes continues along the discrete-time indexk

without change. This means at the following discrete-
time instant after the growth event (k = k̄+1), the dy-
namical network continues its evolution with the corre-
sponding new structure until a new growth event occurs
(k = k̄ + T ), then the structure changes again, and the
growth process continues in that way until the network
has grown to the desiredN nodes.

4 A synchronization criterion for growing dynam-
ical networks

Following the same basic ideas presented in sub-
section2.1, we define synchronization on a growing



dynamical network as the phenomenon in which the
nodes existing in the network move at unison. That is,
a growing dynamical network is said to be synchronize
if the solution

x
k,τ(k)
1 = x

k,τ(k)
2 = . . . = x

k,τ(k)
m0+τ(k) (13)

is asymptotically stable. Moreover, if after a growth
event the synchronized solution (13) remains asymp-
totically stable, we say that the network preserves its
synchronization. On the other hand, if for the resulting
network, the synchronized solution becomes unstable,
we say that the event desynchronizes the network.
As mention before, we consider a growing network

where the growth events occur only after a sufficiently
large time has passed, such that all transient behaviors
have died out. This dwell time restriction allows us
to determine the stability of the resulting synchronized
solution (13) using the criteria (6)-(7) at each growth
event. That is, the corresponding synchronized solution
will be stable if the uniform coupling strength satisfies

1− e−hmax

|λ
τ(k)
2 |

< c <
1 + e−hmax

|λ
τ(k)
N |

whereλτ(k)
i is thei-th eigenvalue of the coupling ma-

trix Aτ(k). In particular, for our Logistic map network,
stability of the synchronized solution is determine by
the criteria

0.5

|λ
τ(k)
2 |

< c <
1.5

|λ
τ(k)
N |

(14)

5 Numerical Results

According to criteron (6), for a network connected in
a fully coupled structure, as larger the number of ini-
tial nodes (m0) is, the smaller the value range of the
coupling strength (c) to synchronize the nodes. On the
other side, if we chose to start with a small number of
nodes, the synchronized behavior will be lost at the ar-
rive and attachement of few new nodes. So, in this work
we takem0 = 5 initial nodes, for whichc ∈ [0.1, 0.3].
As we can see on figure (1), forc = 0.11 we can keep
the synchronization behavior even when six or seven
new nodes arrive and are attached withm = m0 nodes
already present in the network.
The time series of the nodes dynamics as the network

grows is shown in figure (2), which is plotted in terms
of the error between the nodes dynamical states. In or-
der to avoid the transitory behavior of the first nodes,
we let the nodes to evolve untilk0 = 100 time steps,
which, as we can seen in figure (2.a), is enough to al-
low the error between the dynamical states of them0

nodes reach to zero, i.e, be synchronized. After thisk0

Figure 1. Synchronization area for a dynamical network ofm0 =
5 Logistic Maps which structure evolves according to the BA model.

time steps, the network start to growth according to the
BA model, and we assume that each new node es added
afterT = k0 iterations. In figure (2.a) we can see that
at k = 100, the first node arrives and begins to evolve
until be synchronized with the first nodes. Note that
this first event does not affect the dynamical evolution
of them0 nodes. Again, in figure (2.b), we observe that
at k = 200 andk = 300 two new events occurs with
the addition of two the nodes , which alter very little the
synchronized behavior. The same is seen again in fig-
ure (2.c) with two next events, where the synchronized
behavior is significantly altered. Finally, on figure, we
observe that when the last node is added, the nodes are
no longer synchronized, that is, this event desynchro-
nizes the network.

Figure 2. Errors between the nodes dynamical states as the network

grows

6 Conclusions

In this contribution we analyze how the synchroniza-
tion criterion for a dynamical network with fixed struc-
ture and composed by discrete-time systems could be
applied to the case in which this network grows accord-
ing to the BA model. In order to perform such analysis,
we describe mathematicaly the growth process from



the perspective of Discrete Event Systems, wich let us
to define as an event, the addition and attachement of
a new node to the network, and also let us to introduce
another factor on the grow procees, the time in which
a new event occurs, which, for this particular work, we
considere that it is present at equal time intervals. We
examine then how this event affects the collective dy-
namics of the nodes. In particular, each event change
the dynamical equation in two important forms: a new
dimension is added to the equation (1), and the struc-
ture of the network changes with the inclusion of the
new node. Given that the synchronization criterion de-
pends hardly on the eigenvalue espectrum of the cou-
pling matrix, the growth procees are limited to the ad-
dition of a few nodes if we want to achieve the synchro-
nization. However, we consider that the Discrete Event
approach is convenient to development a mathemati-
caly formalism to analize the synchronization criterion
of a dynamical network with growing structure.
Our next step in the study of growing procees in a dy-

namical network is to analyze how synchronization can
be improved through extra procees defined in the BA
model, like the deletion of nodes or links, rewiring the
connections of some nodes, etc. These extra processes
most be designed based on the way in which the eigen-
value spectrum of the coupling matrix change.
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