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Abstract
1

We consider global attractors or invariant sets 
of cocycles which are generated by 
nonautonomous ordinary differential equations. 
Using the singular values of the linearized flow 
and adapted Lyapunov functions we give upper 
Hausdorff dimension estimates for a class of 
global cocycle attractors or invariant sets.
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1 Introduction
General upper estimates of the Hausdorff 

dimension of attractors of dynamical systems 
have been derived for the first time in [Douady, 
Oesterlé, 1980]. Later these results were 
generalized by other authors (see [Smith, 1986; 
Temam, 1988]). For the first time Lyapunov 
functions have been introduced into the 
estimates of Hausdorff dimension in 
[Boichenko, Leonov, 1992]. The investigation of 
nonautonomous differential equations leads to 
the theory of cocycles and their attractors 
([Wakeman, 1975; Bebutov, 1941; Kloeden, 
Schmalfuss, 1997; Chepyzhov, Vishik, 1994]). 
In a certain way one can consider random 
dynamical systems and the associated random 
attractors. Elements of the Douady-Oesterlé 
theory of upper Hausdorff dimension estimates 
for random attractors were developed in 
[Crauel, Flandoli, 1998]. The concept of kernel 
sections for nonautonomous dynamical 
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systems has been developed in [Chepyzhov, 
Vishik, 1994].

In this paper we state two theorems about 
upper Hausdorff dimension estimates of 
cocycle attractors or invariant sets which 
include Lyapunov functions. These results can 
be looked as generalization of the estimates for 
attractors or invariant sets of autonomous 
systems (Boichenko, Leonov, 1992]; 
[Boichenko, Leonov and Reitmann, 2005) to 
cocycle attractors.

The paper is organized as follows. In Section 
2 we recall the concept of cocycles and their 
global �-pullback attractors. In Section 3 we 
briefly introduce the basic tools of Hausdorff 
dimension and singular values of a linear 
operator. Using these termini we can formulate 
an upper Hausdorff dimension estimate of 
cocycle attractors or invariant sets. In Section 4 
we consider attractors of cocycles which are 
generated by nonautonomous differential 
equations in ℝ�. Using the partial trace of the 
Jacobi matrix of the linearization along orbits 
and the derivative of a Lyapunov function along 
the orbits we give a realization of the general 
theorem of Section 3. In Section 5 we 
investigate the well-known Rössler system
([Rössler, 1976]) with time-dependent 
coefficients and derive an upper estimate for 
the Hausdorff dimension of the associated 
cocycle invariant set.

2 Basic tools for cocycle theory
Let (Θ, ��) be a compact complete metric 

space.
A base flow ({��}�∈ℝ, Θ) is defined by a 

continuous mapping �: ℝ × Θ → Θ,          
(�, �) ⟼ ��(�) satisfying



1)��(∙) = id�,
2)����(∙) = ��(∙) ∘ ��(∙) for each �, � ∈ ℝ.    (1)

A cocycle over the base flow ({��}�∈ℝ, Θ) is 

defined by the pair �{��(�,∙)}�∈ℝ
�∈�

, ℝ�� where

1)��(�,∙): ℝ� → ℝ� , ∀� ∈ ℝ, ∀� ∈ Θ,
2)��(�,∙) = idℝ� , ∀� ∈ Θ,                           (2)

3)����(�,∙) = �����(�), ��(�,∙)�,

                                     ∀�, � ∈ ℝ, ∀� ∈ Θ.

In the sequel we shortly denote a cocycle 

�{��(�,∙)}�∈ℝ
�∈�

, ℝ�� over the base flow 

({��}�∈ℝ, Θ) by (�, �).
If � ∈ Θ ⟼ �(�) ⊂ ℝ� is a map, we call 

�� = {�(�)}�∈� a nonautonomous set.
The nonautonomous set  {�(�)}�∈� is said to 

be compact if all sets �(�) ⊂ ℝ� , � ∈ Θ are 
compact, and invariant for the cocycle (�, �) if

����, �(�)� = ����(�)�               (3)

for all � ∈ ℝ and � ∈ Θ.
The set �� = {�(�)}�∈� is said to be globally  

�-pullback attracting for the cocycle (�, �) if

lim
�→�

dist���(���(�), �), �(�)� = 0        (4)

for any � ∈ Θ and any bounded � ⊂ ℝ�.
A nonautonomous set �� = {�(�)}�∈� is called 

global �-pullback attractor for the cocycle (�, �)

if the set �� is compact, invariant and globally   
�-pulback attracting for the cocycle.

In order to get the existence of a global         
�-pullback attractor for the cocycle the following 
property is useful.

The set {�(�)}�∈� is said to be �-forward
absorbing for the cocycle (�, �) if for each 
� ∈ Θ and each bounded set � ⊂ ℝ� there 
exists a time � = �(�, �) such that

��(�, �) ⊂ ����(�)�                  (5)

for all � ≥ �(�, �).
If the cocycle has a globally �-forward 

absorbing compact set �� there exists by the 
Kloeden-Schmalfuss theorem ([Kloeden, 
Schmalfuss, 1997]) a unique global �-pullback
attractor �� = {�(�)}�∈� for the cocycle (�, �)
which is given by 

�(�) = � � ������(�), �(�)�
���
�∈ℝ

,
���
�∈ℝ

∀� ∈ Θ. (6)

3 Upper Hausdorff dimension estimates for 
cocycles

Let (�, �) be a metric space and � ⊂ � be an 
arbitrary subset of �. Assume that � ≥ 0 and 
� > 0 are arbitrary numbers. Let us cover � by 
at least countable many balls ���

of radii �� ≤ �

and define

��(�, �, �) ≔ inf �� ��
�

�

��� ≤ �, � ⊂ � ���

�

�, (7)

where the infimum is taken over all such 
countable �-covers of � under the convention 
that inf ∅ = ∞.

It is obvious that for fixed � and � the function 
��(�, �, �) does not decrease with decreasing �. 
Thus there exists the limit (which may be 
infinite)

��(�, �) ≔ lim
�→���

��(�, �, �) = sup
���

��(�, �, �). (8)

It is known (e.g. [Boichenko, Leonov and 
Reitmann, 2005]) that there exists an unique
��� = ���(�) ∈ [0, ∞] such that

��(�, �) = �
0, for any � > ���,

∞, for any � < ���.

� (9)

The value

dim�� ≔ ���(�)                  (10)

is called the Hausdorff dimension of �.
For an � × � matrix � the singular values are 

the nonnegative square roots of the 
eigenvalues of ���. The singular values of the 
matrix � are denoted by ��(�) and are arranged
in a non-decreasing order

��(�) ≥ ��(�) ≥ ⋯ ≥ ��(�).         (11)

For any � ∈ {0,1, … , �} we put

��(�) ≔ �
��(�)��(�) … ��(�), for � > 0,

1, for � = 0.
� (12)

Suppose � ∈ [0, �] is an arbitrary number. It 
can be represented as � = �� + �, where
�� ∈ {0,1, … , � − 1} and � ∈ (0,1]. Now we put

��(�) ≔ �
���

(�)������
(�)��� , for � ∈ (0, �],

1, for � = 0
�

(13)

and we call ��(�) the singular value function of 
� of order �.

Suppose that (�, �) is a cocycle for which the 
maps ��(�,∙): ℝ� → ℝ� are smooth enough for 
all � ∈ ℝ and � ∈ Θ.



Let us make the following assumptions:
(A1) The nonautonomous set �� = {�(�)}�∈� is 

a compact invariant set for the cocycle 
(�, �).

(A2) For each � ∈ Θ and � > 0 let 

����(�,∙): ℝ� → ℝ�                 (14)

be the differential of ��(�,∙) with respect to 
the second argument, i.e. �, which has the 
following properties:
a) For each � > 0 and � > 0 the function

��(�, �) ≔ sup
�,�∈�(�)

��‖���‖��

���(�,�)���(�,�)�����(�,�)(���)�

‖���‖

(15)

is bounded on Θ and converges to zero 
as � → 0 for each fixed � > 0.

b) For each � > 0

sup
�∈�

sup
�∈�(�)

‖����(�, �)‖�� < ∞        (16)

where ‖�‖�� denotes the operator norm 

of an � × � matrix �.

Now we can state the main result of our 
paper.

Theorem 1 Suppose that the assumptions (A1)
and (A2) are satisfied and the following 
conditions hold:

1)There exists a compact set �� ⊂ ℝ� such 
that

� �(�)

�∈�

⊂ ��. (17)

2)There exist a continuous function          
�: Θ × ℝ� → ℝ��, a time � > 0 and a number 
� ∈ (0, �] such that

sup
(�,�)∈�×��

����(�), ��(�, �)�

�(�, �)
�������(�, �)� < 1.

(18)

Then 

dim��(�) ≤ �   for each � ∈ Θ.     (19)

The proof of Theorem 1 and the next Theorem 
2 will be presented in [Leonov, Reitmann and 
Slepukhin, to appear]. A short announcement of 
these results has already been given in 
[Leonov, Reitmann and Slepukhin, 2010].

4 Cocycles generated by differential 
equations

Let us consider the nonautonomous ODE

�̇ = �(�, �), (20)

where �: ℝ × ℝ� → ℝ� is a ��-smooth (� ≥ 1) 
vector field. With respect to the vector field (20)
we introduce the hull of � given by

ℋ(�) = {�(∙ +�,∙), � ∈ ℝ},           (21)

where the closure is taken in the compact-open 
topology. One can show that ℋ(�) is metrizable 
with a metric �. As a result we get the complete 
metric space (ℋ(�), �) on which a base flow
called Bebutov flow ([Bebutov, 1941]) is given 
by the shift map

������ = ��(∙ +�,∙)                  (22)

for �� ∈ ℋ(�).
We assume that ℋ(�) is compact. A sufficient 

condition for this is the almost-periodicity of 
�(�, �) with respect to �.

Suppose now that we have on Θ = ℋ(�) the 
"evaluation map" given by

(�, �) ∈ Θ × ℝ� ⟼ �(0, �).           (23)

In particular we get for � = � ∈ ℋ(�)

��(�, �) = �(0, �).                   (24)

It follows that

��(��(�), �) = �(�, �)               (25)

for all � ∈ ℝ and � ∈ ℝ�.
Using this map we can associate to (20) the 

family of vector fields

�̇ = ��(��(�), �),                  (26)

where � ∈ ℋ(�) is arbitrary. As special case 
the given system (20) is included into (26).

Under the following additional assumptions on 
(20) one can show for system (26) the 
existence of a cocycle over the base flow 
�{��}�∈ℝ, ℋ(�)� (cf. [Wakeman, 1975]).
(A3) The map (�, �) ∈ ℝ × ℝ� ⟼ �(�, �) is 

continuous and satisfies a local Lipschitz 
condition with respect to �.

(A4) There exist locally integrable functions 
�, �: ℝ → ℝ such that

‖�(�, �)‖ ≤ �(�)‖�‖� + �(�)       (27)

for all (�, �) ∈ ℝ × ℝ�.



For a point (��, ��) ∈ Θ × ℝ� we denote by 
�(�, ��) the solution of the variational equation.
along the orbit of the cocycle through (��, ��),  
i.e., the equation

�̇ = �������(��), ��(��, ��)��        (28)

with the initial condition �(0, ��) = �� ∈ ℝ�. 
Then we have

����(��, ��)�� = �(�, ��)   for � ≥ 0,   (29)

i.e. ����(��, ��)�� is a solution of the variational 
equation (28).

Let

��(�, �) ≥ ��(�, �) ≥ ⋯ ≥ ��(�, �)     (30)

be the eigenvalues of the matrix

�

�
�����(�, �) + ����(�, �)��.           (31)

Theorem 2 Suppose that there exist a 
continuous function �: Θ × ℝ� → ℝ for which the 
derivative 

�

��
����(�), ��(�, ��)�               (32)

exists along the given trajectory. Suppose 
further that there are a number � ∈ (0, �]  
written as � = �� + � with �� ∈ {0,1, … , � − 1}
and � ∈ (0,1] and a time � > 0 such that

����, �(�)� = ����(�)�   for all � ∈ Θ,  (33)

the condition (17) is satisfied and

�[

�

�

�����(�), ��(�, ��)� + ⋯ +

+���
���(�), ��(�, ��)� +                    (34)

+���������(�), ��(�, ��)� +

+
�

��
����(�), ��(�, ��)�]�� < 0

for all � ∈ Θ and �� ∈ ��.
Then

dim��(�) ≤ � for all � ∈ Θ.          (35)

5 Upper Hausdorff dimension estimate for 
invariant set of nonautonomous Rössler 
System

We consider the nonautonomous Rössler 
system ([Rössler, 1976])

�

�̇ = −� − �,
�̇ = �,

�̇ = −�(�)� + �(�)(� − ��),

� (36)

where the parameters are functions        
�, �: ℝ → ℝ�� which we write as 

�(�) = �� + ��(�),  
�(�) = �� + ��(�).                  (37)

Here �� and �� are positive constants;       
��(∙) and ��(∙) are smooth functions satisfying 
the inequalities

|��(�)| ≤ ���,
|��(�)| ≤ ���   for all � ∈ ℝ,   (38)

where � ∈ (0,1) is a small parameter. Assume 
also, that there is an � > 0 such that 

��̇(�)� ≤ ��  for all � ∈ ℝ       (39)

and the hull ℋ(�) with � as right-hand side of 
(36) is compact in compact-open topology. A 
sufficient condition for this is the almost 
periodicity of � and �.

It follows that system (36) is a special type of 
system (20) for which the assumptions of 
Wakeman's theorem are satisfied. Thus (36)

generates a cocycle �{��(�,∙)} �∈ℝ
�∈ℋ(�)

, ℝ�� over 

the base flow �{��}�∈ℝ, ℋ(�)�. We assume that 
for this cocycle there exist a compact set 
�� = {�(�)}�∈ℋ(�), which satisfies (17) with a 

compact ��, and a time � > 0 such that 

����, �(�)� = ����(�)�   for all � ∈ ℋ(�). (40)

Instead of (36) we consider the family of 
systems

�

�̇ = −� − �,
�̇ = �,

�̇ = −��(�)� + ��(�)(� − ��),

� (41)

where for brevity we have written

��(�) ≡ �����(�)�

and ��(�) ≡ �����(�)�.                 (42)

Our aim is to estimate from above the 
Hausdorff dimension of �� with the help of 



Theorem 2. To do so we have to check the 
inequality

��,�(�, �, �, �) + ��,�(�, �, �, �) +

+���,�(�, �, �, �) +
�

��
��(�, �, �, �) < 0,      (43)

for all � ∈ [0, �], (�, �, �) ∈ �� and � ∈ ℋ(�),    

in which

��,�(�, �, �, �) ≡ �����(�), ��(�, �, �, �)�,

� = 1,2,3     (44)

are the eigenvalues of the symmetrized 
Jacobian matrix for the right-hand side of (41)
ordered with respect to their size as

��,� ≥ ��,� ≥ ��,�                (45)

and 

��(�, �, �, �) ≡ ����(�), ��(�, �, �, �)�   (46)

is a Lyapunov function.
It is easy to see that 

��,� =
�

�
�−��(�) + ���

�(�) + 1 + ��
�(�)(1 − 2�)��,

��,� = 0,                                                        (47)

��,� =
�

�
�−��(�) − ���

�(�) + 1 + ��
�(�)(1 − 2�)��.

Let us choose the Lyapunov function � as

�(��(�), �, �) ≔
�

�
(1 − �)�(� − ��(�)�),   (48)

where � is a varying parameter. A direct 
calculation shows that

�̇� =
�

�
(1 − �)� ����(�) + ��(�)�� − �̇�(�)� − ��(�)���.

(49)

It follows that the inequality (43) is satisfied if 

−��(�)(1 + �) + (1 − �)ℎ�(�, �, �; �) < 0
for all � ∈ [0, �] , � ∈ ℋ(�) and (�, �) ∈ Pr�,���,

(50)

where

ℎ�(�, �, �; �) = ���
�(�) + 1 + ��

�(�)(1 − 2�)� +

+� ����(�) + ��(�)�� − �̇�(�)� − ��(�)���  (51)

and Pr�,��� is the projection of �� on the

subspace of � and �.
Let us estimate ℎ(�, �, �; �) from above. We 

can write this expression as

ℎ�(�, �, �; �) =

= − �����
�(�) + 1 + ��

�(�)(1 − 2�)� −
�

��
�

�

+      

+��(��
�(�) + 1 + ��

� (�)(1 − 2�)�) +
�

��� +

+� ����(�) + ��(�)�� − �̇�(�)� − ��(�)���, (52)

where � ≠ 0 is another varying parameter. 
After some transformations we get for all 

arguments the inequality

ℎ�(�, �, �; �) ≤

≤ ��(��
�(�) + ��

�(�) + 1) +
�

��� − ��̇�(�)� −

− ����(�) − 4����
�(�)� �� +

�����
�(�)�����(�)���(�)�

���(�)������
�(�)

�
�

+

+
������

�(�)�����(�)���(�)��
�

�����(�)������
�(�)�

.       (53)

Let us take � and � so that 

���(�) − 4����
�(�) > 0

for all � ∈ [0, �] and � ∈ ℋ(�). (54)

This is possible under our conditions for 
sufficiently small � > 0.

Using (53) and (54) we get 

ℎ�(�, �, �; �) ≤ ��(��
�(�) + ��

�(�) + 1) +
�

��� −

−��̇�(�)� +
������

�(�)�����(�)���(�)��
�

�����(�)������
� (�)�

.    (55)

Since Pr��� is compact there exists an � > 0
such that

|�| ≤ �  for all � ∈ Pr���.     (56)

Let us choose now the parameters as

� ≔ 4����
������

�����
,

�� ≔
�

��(������)����
���

.             (57)

Substituting these values into (55), taking a 
number of direct calculations and using the 
estimates (38), (39) and (56) we finally get the
estimate

ℎ�(�, �, �; �) ≤ �(�� + 2��)� + ��
� + 1 + � ∙ �

for all � ∈ [0, �] , � ∈ ℋ(�) and (�, �) ∈ Pr�,���,
(58)

where � is a term which can be directly 
calculated by means of the parameters           
��, ��, �, � and � of the system and which is 
bounded from above for all small � > 0.



In order to use Theorem 2 effectively we need 
to find the minimal � for which the inequality 
(50) still holds. Thus, from (50), (58) and 
Theorem 2 it follows that

dim��(�) ≤ 3 −
���(�)

��(�)���(�,�,�;�)
≤

≤ 3 −
�(���)��

(���)����(������)����
��� � � ∙ �

.  (59)

It is clear that if we turn back to the 
autonomous Rössler system, i.e. tend � → 0, 
we will get the already known Hausdorff 
dimension estimate for a compact invariant set 
of the Rössler system 

dim��� ≤ 3 −
���

����(������)����
���

     (60)

(cf. [Boichenko, Leonov and Reitmann, 2005).
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