CONTROLLABILITY OF SECOND-ORDER SWITCHED LINEAR SYSTEMS

J. Clotet UPC Spain josep.clotet@upc.edu M.I. García-Planas UPC Spain maria.isabel.garcia@upc.edu M.D. Magret UPC Spain m.dolors.magret@upc.edu

Abstract

We consider second-order switched linear systems and obtain sufficient conditions for such systems to be controllable.

Key words

Switched linear system, controllability.

1 Introduction

Many second order linear systems appear in mechanical and electrical engineering: forced mass-spring damper systems and LRC circuits, for example, exhibit second order behaviour. Controllability of these systems was studied by the authors in [Clotet and García-Planas, 2006], [García-Planas, 2007] and [García-Planas, 2008].

Switched systems constitute a particular kind of hybrid systems which have been studied with growing interest in the last years. In particular, different authors have studied second-order switched systems. In [Sun and Ge, 2005], the controllability of switched linear systems is characterized. The conjecture which states that Hurwitz stability of the convex hull of a set of Metzler matrices is a necessary and sufficient condition for the asymptotic stability of the associated switched linear system under arbitrary switching is proved to be true for systems constructed from a pair of secondorder Metzler matrices, systems constructed from an arbitrary finite number of second-order Metzler matrices and that the conjecture is in general false for higher order systems. In [Xuping and Antsaklis, 1999], necessary and sufficient conditions for stabilizability of second-order LTI systems are found. In [Zhang, Yangzhou and Pingyuan, 2005], a necessary and sufficient condition for the origin to be asymptotically stable under the predesigned switching law is obtained.

In this paper, we obtain sufficient conditions for a second-order switched linear system to be controllable.

2 Second-order Switched Linear Systems

Roughly speaking, a switched system is a set of several of continuous-time (or discrete-time) dynamical subsystems and a rule (switching law) orchestrating the switching between them, specifying at any time instant which subsystem is active.

We deal with *switched second-order linear systems*, that is to say, switching systems consisting of several second-order linear subsystems.

Let us consider a well-defined switching path θ : $[t_0,T) \longrightarrow M, t_0 < T \leq \infty$, for some index set M, initial time t_0 , and a switching sequence of θ over $[t_0,T), \{(t_0,\theta(t_0^+)), (t_1,\theta(t_1^+)), \dots, (t_\ell,\theta(t_\ell^+))\}$.

Definition 2.1. A singular second-order switched linear system is a system which consists of several linear second-order subsystems and a switching well-defined path σ taking values into the index set $M = \{1, \ldots, \ell\}$ which indexes the different subsystems.

$$\begin{cases} E_{\sigma}\delta^{2}(x) = A_{\sigma}\delta x + B_{\sigma}x + C_{\sigma}u\\ y = D_{\sigma}x \end{cases}$$
(1)

where $E_{\sigma}, A_{\sigma}, B_{\sigma} \in M_n(\mathbb{R}), C_{\sigma} \in M_{n \times m}(\mathbb{R}), D_{\sigma} \in M_{p \times n}(\mathbb{R}).$

In the continuous case, such a system can be mathematically described by

$$\begin{cases} E_{\sigma}\ddot{x}(t) = A_{\sigma}\dot{x}(t) + B_{\sigma}x(t) + C_{\sigma}u(t) \\ y(t) = D_{\sigma}x(t) \end{cases}$$
(2)

where $E_{\sigma}, A_{\sigma}, B_{\sigma} \in M_n(\mathbb{R}), C_{\sigma} \in M_{n \times m}(\mathbb{R}), D_{\sigma} \in M_{p \times n}(\mathbb{R}).$

In the sequential case, by

$$\begin{cases} E_{\sigma}x(k+2) = A_{\sigma}x(k+1) + B_{\sigma}x(k) + C_{\sigma}u(k)\\ y(k) = D_{\sigma}x(k) \end{cases}$$
(3)

where $E_{\sigma}, A_{\sigma}, B_{\sigma} \in M_n(\mathbb{R}), C_{\sigma} \in M_{n \times m}(\mathbb{R}), D_{\sigma} \in M_{p \times n}(\mathbb{R}).$

Calling $z = \delta x$, we can linearize a second-order switched linear system thus obtaining:

$$\begin{pmatrix} I_n \\ E_\sigma \end{pmatrix} \begin{pmatrix} \delta x \\ \delta z \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ B_\sigma & A_\sigma \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ C_\sigma \end{pmatrix} u$$

and will write

$$\boxed{\mathbb{E}\delta X = \mathbb{A}X + \mathbb{B}u} \tag{4}$$

where $X = \begin{pmatrix} x \\ \delta x \end{pmatrix}$.

In the case where $E_i = I_n$, for all $i \in M$ the switched system will be called non-singular. Obviously systems where rk $E_i = n$ for all $i \in M$ can be reduced to the non-singular case.

3 Controllable States. Controllability

We will denote, as usual, by $\Phi(t, t_0, x_0, u, \sigma)$ the state trajectory at time t of system (1) starting from t_0 with initial value x_0 , input u and switching well-defined path σ .

Definition 3.1. A switched singular second-order linear system is said to be controllable when for any $t_0 \in \mathbb{R}$, x_f and $w \in \mathbb{R}^n$, there exists a real number $t_f > t_0$, a switching well-defined path $\sigma : [t_0, t_f] \longrightarrow M$ and an input $u : [t_0, t_f] \longrightarrow \mathbb{R}^m$ such that

$$\Phi(t_f, t_0, x_0, u, \sigma) = x_f, \dot{\Phi}(t_f, t_0, x_0, u, \sigma) = w$$

Remark 3.1. Obviously, when one of the subsystems of system

$$\begin{cases} E_{\sigma}\delta^{2}(x) = A_{\sigma}\delta x + B_{\sigma}x + C_{\sigma}u \\ y = D_{\sigma}x \end{cases}$$
(1)

is controllable, the system is also controllable.

We remember that we can determine whether any subsystem is controllable using the following characterizations.

Proposition 3.1. ([Clotet and García-Planas, 2006]) *A* second order singular linear system

$$\begin{cases} E\ddot{x}(t) = A\dot{x}(t) + Bx(t) + Cu(t) \\ y(t) = Dx(t) \end{cases}$$

is controllable if, and only if, both matrices

$$\begin{array}{l} i) & (E \ C) \\ ii) & (s^2 E - s A - B \ C) \end{array}$$
 (5)

have full rank for all $s \in \mathbb{C}$.

Proposition 3.2. ([García-Planas, 2007]) *A second order singular linear system*

$$\begin{cases} E\ddot{x}(t) = A\dot{x}(t) + Bx(t) + Cu(t) \\ y(t) = Dx(t) \end{cases}$$

is controllable if, and only if, the following $2n^2 \times ((2n-2)n+2nm)$ -matrix

$$\mathcal{C} = \underbrace{\begin{pmatrix} -E & 0 & \cdots & 0 & C & 0 & 0 & \cdots & 0 & 0 & 0 \\ -A & -E & \cdots & 0 & 0 & C & 0 & \cdots & 0 & 0 & 0 \\ B & -A & \cdots & 0 & 0 & 0 & C & \cdots & 0 & 0 & 0 \\ & \ddots & & \ddots & & \ddots & & \\ 0 & 0 & \cdots & -E & 0 & 0 & 0 & \cdots & 0 & C & 0 \\ 0 & 0 & \cdots & -A & 0 & 0 & 0 & \cdots & 0 & C & 0 \\ 0 & 0 & \cdots & B & 0 & 0 & 0 & \cdots & 0 & 0 & C \\ \hline (2n-2)n & & 2nm & & & \\ \end{bmatrix}}$$

has full rank.

From here we deduce the first sufficient conditions for controllability of system (1).

Proposition 3.3. Sufficient conditions for controllability of system (1) are the following ones.

1. There exists $i \in \{1, \ldots, \ell\}$ such that

i)
$$rk(E_i C_i) = n$$
, and
ii) $rk(s^2E_i - sA_i - B_i C_i) = n, \forall s \in \mathbb{C}.$

2. There exists $i \in \{1, \ldots, \ell\}$ such that matrix

$$\mathcal{C}_{i} = \underbrace{\begin{pmatrix} -E_{i} & 0 & \dots & 0 & C_{i} & 0 & 0 & \dots & 0 & 0 & 0 \\ -A_{i} & -E_{i} & \dots & 0 & 0 & C_{i} & 0 & \dots & 0 & 0 & 0 \\ B_{i} & -A_{i} & \dots & 0 & 0 & 0 & C_{i} & \dots & 0 & 0 & 0 \\ & \ddots & & \ddots & & \ddots & & \\ 0 & 0 & \dots & -E_{i} & 0 & 0 & 0 & \dots & C_{i} & 0 & 0 \\ 0 & 0 & \dots & -A_{i} & 0 & 0 & 0 & \dots & 0 & C_{i} & 0 \\ 0 & 0 & \dots & B_{i} & 0 & 0 & 0 & \dots & 0 & 0 & C_{i} \end{pmatrix}}_{(2n-2)n}$$

has full rank.

We are interested in the non-trivial case where all subsystems are not controllable. From now on, we will consider all subsystems are non-controllable.

Proposition 3.4. A switched second-order linear system

$$\begin{cases} E_{\sigma}\delta^{2}(x) = A_{\sigma}\delta x + B_{\sigma}x + C_{\sigma}u \\ y = D_{\sigma}x \end{cases}$$
(1)

is controllable if, and only if, the linearized switched linear system $\mathbb{E}_{\sigma}\delta X = \mathbb{A}_{\sigma}X + \mathbb{B}_{\sigma}u$:

$$\begin{pmatrix} I_n \\ E_{\sigma} \end{pmatrix} \begin{pmatrix} \delta x \\ \delta z \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ B_{\sigma} & A_{\sigma} \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ C_{\sigma} \end{pmatrix} u$$

is controllable.

Let us consider the following matrix sequence. $\mathcal{N}_0 = (\mathbb{B}_1 \dots \mathbb{B}_\ell)$

$$\mathcal{N}_{k} = \mathcal{A} \cdot \operatorname{diag}(\mathcal{N}_{k-1}, \dots, \mathcal{N}_{k-1}) \text{ for } k > 0,$$

where $\mathcal{A} = (I_{2n} \mathbb{A}_{1} \dots \mathbb{A}_{1}^{2n-1} \dots \mathbb{A}_{\ell} \dots \mathbb{A}_{\ell}^{2n-1}).$

Remark 3.2. Note that

$$\operatorname{rk} \mathcal{N}_0 \leq \operatorname{rk} \mathcal{N}_1 \leq \cdots \leq \operatorname{rk} \mathcal{N}_{2n} = \operatorname{rk} \mathcal{N}_{2n+1} = \dots$$

Proposition 3.5. A necessary and sufficient condition for controllability of singular second-order switched linear system (2) is

$$\operatorname{rk}\mathcal{N}_{2n}=2n$$

Proof. It follows from the algebraic characterization of controllable switched linear systems in [Sun and Ge, 2005].

Corollary 3.1. If there exists $j \in \{1, ..., 2n\}$ such that \mathcal{N}_j has full rank, then the singular second-order switched linear system (2) is controllable.

Then the following sufficient condition for controllability may be stated.

In particular, if

$$rk \ (\mathbb{B}_1 \dots \mathbb{B}_\ell) = n$$

then system (2) is controllable.

For all (i_1, \ldots, i_ℓ) permutations of $\{1, \ldots, \ell\}$, let us denote by

$$\mathcal{A}_i = \begin{pmatrix} \mathbb{A}_{i_1} \ \mathbb{A}_{i_2} \ \dots \ \mathbb{A}_{i_\ell} \\ 0 \ I_{2n} \\ & \ddots \\ & & I_{2n} \end{pmatrix},$$

$$\mathcal{B}_i = egin{pmatrix} \mathbb{B}_{i_1} \ \mathbb{B}_{i_2} \ \dots \ \mathbb{B}_{i_\ell} \ & \ddots \ & \mathbb{B}_{i_1} \ \mathbb{B}_{i_2} \ \dots \ \mathbb{B}_{i_\ell} \end{pmatrix}$$

Theorem 3.1. A sufficient condition for controllability of the singular second-order switched linear system is that there exists $i \in \{1, ..., \ell\}$ such that

$$\operatorname{rk}\left(\mathcal{B}_{i} \ \mathcal{A}_{i} \mathcal{B}_{i} \ \dots \ \mathcal{A}_{i}^{2n-1} \mathcal{B}_{i}\right) - 2n =$$

$$= (1-m) \operatorname{rk} \left(\mathbb{B}_{i_1} \dots \mathbb{B}_{i_\ell} \right)$$

4 Controllability and feedback transformations

Let us consider a subsystem

$$\ddot{x} = A_i \dot{x} + B_i x + C_i u \tag{6}$$

for some $i \in M$.

We introduce state and derivative feedbacks:

$$u = F_i \dot{x} + G_i x + v$$

so that the system is transformed into

$$\ddot{x} = (A_i + C_i F_i) \dot{x} + (B_i + C_i G_i) x + C_i v$$
(7)

Theorem 4.1. *The system* (6) *is controllable if and only if system* (7) *is.*

Corollary 4.1. Suppose that the system (6) verifies $C_j = C_i$, $A_j = A_i + C_i F_i$ and $B_j = B_i + C_i G_i$ for some couple $1 \le i < j \le \ell$. Then, the system is controllable if and only if $\ddot{x} = A_{\bar{\sigma}}\dot{x} + B_{\bar{\sigma}}x + C_{\bar{\sigma}}u$ is, where $\bar{\sigma}$ is the path taking values into the index set $\overline{M} = \{1, \ldots, j - 1, \hat{j}, j + 1, \ldots, \ell\}$.

Corollary 4.2. Suppose that the system (6) verifies $C_i = C$, $A_{i+1} = A_i + C_i F_i$ and $B_{i+1} = B_i + C_i G_i$ for all $i = 1, ..., \ell$. Then, the system is controllable if, and only if, $\ddot{x} = A_1 \dot{x} + B_1 x + C_1 u$ is.

Remark 4.1. Condition $rk(E_i C_i) = n$ ensures that there exists a second order derivative feedback F_i such that $E_i + C_i F_i$ is regular and pre-multiplying the system by $(E_i + C_i F_i)^{-1}$ the new system is standard.

We conclude that in this case we can apply sufficient conditions for controllability obtained for standard systems.

Acknowledgements

This work was partially supported by MTM2010-19356-C02-02.

References

Clotet, J., García-Planas, M.I. (2006) Second order generalized linear systems. Structural invariants and controllability. *International Journal of Pure and Applied Mathematics*, **27 - 4**, pp. 465-476.

García-Planas, M.I. (2007) *Controllability matrix of second order generalized linear systems*. Systems theory and Scientific computation. WSEAS Press, pp. 276-279.

García-Planas, M.I. (2008) Bounding the distance from a controllable two order system to a non-controllable one. *International Journal of Contemporary Mathematical Sciences* **3**, **1-4**, pp. 17-23.

Gurvits, L., Shorten, R., Mason, O. (2007) On the

Stability of Switched Positive Linear Systems. *IEEE Transactions on Automatic Control*, **52-6**, pp. 1099-1103.

Sun, Z., Ge, S.S. (2005) *Switched Linear Systems*. London England. Springer.

Xuping, X., Antsaklis, J. (1999) Stabilization of Second-Order LTI Switched Systems. *Proceedings* of the 38th Conference on Decision and Control. Phoenix, USA.

Zhang, L., Yangzhou, C., Pingyuan, C. (2005) Stabilization for a class of second-order switched systems. *Nonlinear Analysis*, **62**, pp. 1527-1535.