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Abstract
We study a simple stochastic cellular model of Lat-

tice Lotka–Volterra class driven by particular external
forces. To simulate the system dynamics we perform
Kinetic Monte Carlo simulation. We demonstrate the
spatial synchronization phenomenon of local oscilla-
tors and a global oscillations appearance (the Hopf bi-
furcation). The extent of the external influence was
chosen as a control parameter of the system.
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1 Introduction
Although Lotka’s and Volterra’s pioneering works de-

voted to competitive behavior in chemical and popu-
lation dynamics was published in first half of the 20th
century the problems of competitive dynamics are still
actual and full of interest for many scientists. Synchro-
nization effects, spatiotemporal oscillations and fluctu-
ations, pattern formation and fractal features – here is
not a full list of phenomena a scientist deals with when
studying Lotka–Volterra systems [1]-[15]. In addition
these effects are extremely widespread in experiments
and real systems (especially in catalytic chemistry and
biology [16]-[22]).
There are two basic types of models designed for

Lotka–Volterra systems simulation. The first one is a
group of phenomenological macroscopic models based
on the ODE description (for example mean-field (MF)
models). Most of them predict a neutral stability of the
systems under consideration i.e. the system solution
is an infinite number of closed trajectories around the
center. Unfortunately such a forecast is often unrelated
to the data observed in nature. As a rule in a real life the
system selects some preferred regime depending on ad-

ditional parameters (for example noise character, spa-
tial parameters and etc.) and it is robust to the initial
conditions variations. Usually the models above ignore
the system spatial dynamics, while the spatial effects
are responsible for the variety of nontrivial phenom-
ena observed. The second type of the models based on
various stochastic cellular automata and other numeri-
cal methods provide the direct microscopic simulation
of the underlying processes. The Kinetic Monte Carlo
(KMC) simulation is one of them. This is a kind of
probabilistic cellular automaton suitable in our inves-
tigations. This method enables to consider all aspects
of spatial and temporal dynamics of the system, but re-
quires a long computer calculation. The last fact limits
the size of simulated system.

In earlier studies [8]-[10] the cyclic Lattice Lotka–
Volterra (LLV) models were considered. These mod-
els describe a variety of heterogeneous autocatalytic
processes taking place on an underlying substrate or
a closed chain of predator–prey interactions in popu-
lation dynamics context (also taking place on a sub-
strate). The special features of these models are re-
stricted geometry of the support, local character of
interactions and diffusion absence. Both (2+1)-LLV
((LLV from here) and (4+1)-LLV systems were studied
in [8]-[10] and in both cases the systems were subjected
to the MF description and KMC simulation.

In the current study we consider LLV system under
specific external influence we call “external mixing”.
At first we outline the results of previous investigations
essential for our considerations. Then we introduce
long range mixing and describe how even a weak ex-
ternal mixing bring the system from local oscillatory
behavior to limit cycle robust oscillations. Moreover
we try to find out the role of spatial patterns in LLV
model dynamics and discuss the possibilities of system
controlling.



2 The LLV system and its MF description
Let’s consider a square regular lattice containing N =

L × L sites. Every site is a three-state unit governed
by its neighborhood state and undergoing a series of
cyclic transformations with corresponding transition
rates. The site states are denoted by X , Y and S sym-
bols while the transition rates by k1, k2, k3. A chosen
unit undergoes the transition with some probability, if
one site in its close vicinity has an appropriate phase.
Thus we have the LLV transition scheme of the follow-
ing form [8]:

X + Y
k1→ 2Y,

Y + S
k2→ 2S,

S + X
k3→ 2X,

(1)

It means that randomly chosen X-unit turns to Y -state
with probability k1 if a randomly chosen neighbor is
Y . The same is for the rest lines of scheme.
System (1) belongs to Lattice Lotka–Volterra class.

This model is very simple, but it enables to study non-
trivial effects resulting from the locality of interactions
and nonlinearity.
From the dynamical point of view such a system may

be described by the mean field rate equations. Today
it’s well known that MF prediction for this system type
differ sufficiently from the observed data because of the
spatial restrictions of the support. But MF approach is
still useful. Taking it into account provides with some
general information we can use for further considera-
tions. The MF dynamics for the LLV system has been
described in details in [8]. Here we just briefly remind
the main results needed below. The MF equations as-
sociated with scheme (1) are:

ẋ = −k1xy + k3x(1− x− y)
ẏ = k1xy − k2y(1− x− y) (2)

where x and y are the relative concentrations of the cor-
responding sites and k1,2,3 – are the kinetic constants
respectively. It is reasonable to focus on a region within
the following boundaries: x = 0, y = 0, x + y = 1.
The considered variables have a physical meaning in
that case.
The system (2) has four equilibrium points: three

saddle points P1(0; 0), P2(1; 0), P3(0; 1), and a cen-
ter P4

(
k2

k1+k2+k3
; k3

k1+k2+k3

)
. The model is known to

demonstrate conservative periodic oscillations and the
phase portrait of the system consists of an infinite num-
ber of closed trajectories around the center P4. The lin-
earized frequency associated with the small oscillations
around the center [8] is found to be:

ω =
(

k1k2k3

k1 + k2 + k3

)1/2

(3)

The corresponding amplitudes depend on the initial
conditions. Changing the parameters ki results in time
scale and orbits shape modifications. However, the sys-
tem is insensitive to parameters variations in terms of
bifurcational analysis.

3 Kinetic Monte Carlo simulation
Since the homogeneous mean-field model is not ap-

propriate to describe the full variety of phenomena aris-
ing from the support spatial restrictions, we perform the
Kinetic Monte Carlo (KMC) simulation of unit’s be-
havior. This is an alternative tool for initial scheme in-
vestigation. It’s based on the microscopic simulation of
the lattice processes. The KMC simulation algorithm is
as follows:

1. A lattice unit and its neighbor unit random selec-
tion at every microscopic step.

2. Units state checking and making a comparison
with the initial scheme conditions.

3. As soon as comparison has been passed success-
fully, the corresponding transformation is realized
with probability ki/max (k1, k2, k3).

4. The end of microscopic step. Return to item 1.
Every algorithm time unit called Monte Carlo step
(MCS) contains N microscopic steps.

To describe the system dynamics it is reasonable to
use x and y variables which represent averaged relative
concentrations of units. These variables define system
state ambiguously (their values are independent of the
units distribution in space). But they easily define the
lattice state in general.
According to previous investigations the time evolu-

tion of the system contains two intervals – a transient
process and stochastic oscillations around fixed point
P4. The oscillations tend to zero at the limit of infinite
lattice size. Starting from the different initial condi-
tions a phase trajectory is attracted by the locality of
the point P4. It looks like P4 is a stable focus and it
attracts all trajectories started throughout its basin. It
is interesting that when simulated by KMC the model
demonstrates dissipative dynamics at global level.
It well known from the previous investigations [8],

[10] in case of random and uniform initialization spon-
taneous clusters formation takes place on the surface.
And this process is known to be responsible for tran-
sient behavior. The units forming a single cluster have
the same phases. Since unit’s interactions have lo-
cal character the neighboring clusters interact only via
their boundaries. Some of them increase their size in
expense of others and as long as the lattice is far from
poisoning (one state absolute domination) the clusters
boundaries demonstrate a continuous motion.
Furthermore the homogeneously initialized lattice

consists of domains after the clusters formation. The
domains are local oscillators demonstrating out of
phase nonperiodic oscillatory behavior. The oscilla-
tors scale correlate with the mean cluster size. As it
is known these oscillators have fractal structure [9].



As it was pointed above the stochastic oscillations
look like a small fluctuations around the fixed point P4

if the lattice is large enough. Their intensity decreases
with the lattice size growing just as in ensembles of
non-interacting oscillators. But oscillations stay robust
in small parts of the lattice. The dynamics of the sys-
tem is then a superposition of local asynchronous os-
cillations. That is why increasing the lattice size, one
observes global oscillations suppression.
Notice that KMC-behavior differs sufficiently from

the MF approach. Instead of conservative periodic MF-
behavior the irregular oscillations vanish when the lat-
tice size increases. The decrease of the autocorrelation
function and the widespread power spectrum for KMC-
oscillations (not shown) are the evidence of the irregu-
lar oscillating process taken place on the surface. Vari-
ation of the parameters k1, k2, k3 doesn’t induce any
qualitative changes in the system behavior, which re-
mains in agreement with the mean-field theory.

4 KMC simulation of the system with long range
mixing

Returning to the initial scheme (1) we assume now
the presence of an external force providing a possibil-
ity of immediate phase exchange between lattice units.
Moreover we stipulate the probability of such event to
be independent of the unit position. In other words we
activate an external mixing influence providing a “shuf-
fling” effect on the surface. Such an innovation of the
initial system seems to be baseless. But it is not so.
The “shuffling” external influences are not exotic for
systems under consideration. In the case of popula-
tion dynamics such a mixing may be realized by the
natural migration processes or by the artificial trans-
port activity. If we deal with autocatalytic reactions on
the surface, some transport agent that is not involved
in reactions may be responsible for “shuffling”. These
processes are also called ”long range diffusion”.
Consider the simulation algorithm and introduce some

quantitative characteristic for mixing intensity defini-
tion. As long as the above mentioned influence does
not affect the interaction rules, we perform the same
simulation algorithm as in previous chapter 1. The only
modification here is the “shuffling” steps added at ev-
ery MCS. At every “shuffling” step two random lattice
sites are chosen. Then the chosen units exchange their
phases. The number of “shuffling” steps corresponds
to the mixing extent. To characterize the mixing de-
gree we use the following parameter:

p =
( n

N

)
, (4)

where n is number of “shuffling” steps at every MCS
and N is a total number of lattice sites.
As the “shuffling” keeps the total number of X , Y

and S-sites unchanged, mixing implementation itself
does not effect on current state of the system in terms of
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Figure 1. Time realizations of the X-units global concentrations
starting from the same initial conditions x0 = y0 = 0.33 for
p = 0 (mixing absence) and p = 0.03. Parameters of the system
are: k1 = k2 = k3 = 1, L = 2048 sites.

global concentrations of the units. But mixing causes
dramatic changes in the system dynamics by changing
the local space configurations of the states distribution.
Figure 1 represents a comparison of two different

KMC realizations of scheme (1) for p = 0 and p =
0.03. The observed stochastic oscillations have been
described for the case of mixing absence (p = 0).
These oscillations have low intensity if the lattice is
large enough and look like small fluctuations of the
global concentrations around the fixed point P4. Global
oscillations are starting with the same initial conditions
and the same parameters values but with mixing extent
p = 0.03 (the black line on the fig. 1).
According to our expectations the oscillations char-

acteristics have approached the ones observed at MF
level. These oscillations appear at the global level and
their regularity is much bigger. The shape of the phase
orbits changes with parameters ki variation just as in
the case of the mean-field prediction. Furthermore, the
dependence of oscillations frequencies on parameters
ki looks like the corresponding function graph for ex-
pression (3), but the regime remains robust in a wide
range of initial conditions. Starting from different ini-
tial points in phase space a phase trajectory comes to
the attracting set after the transient process. It is pos-
sible to define this attractor as a noisy limit cycle by
analogue with the deterministic systems.
Though the noise is an essential part of our model, we

suppose that these stochastic oscillations tend to take
a regular form with the lattice size growing because
of better statistics. To verify this hypothesis we have
considered two power spectra for different lattice sizes
L = 256 sites and L = 512 sites (see fig. 2). The
other parameters of the system were identical for both
spectra. The characteristic peaks of the spectra have
multiple frequencies. Moreover, despite the fact that
the lattice linear sizes ratio does not exceed the value
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Figure 2. Power spectra of the global oscillations of X-
concentrations for two different lattice sizes. Initial conditions and
parameters are the same as in the fig. 1. Mixing extent is p = 0.02.
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Figure 3. Dispersions for the processes x(t) depending on the
mixing extent p for different values of k1. Lattice size is L = 500
sites. Initial conditions and others parameters are the same as in fig-
ure 1.

two, the noise backgrounds of the spectra differ suffi-
ciently. Therefore at the limit of infinite lattice we will
get periodic oscillations of state concentrations.
Continuing to consider oscillations features let’s take

a closer look to their amplitude. There is no difficulty
in understanding why the mean amplitude of oscilla-
tions is insensitive to the lattice size changes. This
corresponds to the definition of the mixing strength p
which shows the part of the lattice subjected to the
shuffling effect at every simulation time step. That’s
why different lattices undergo the same shuffle effect
for a fixed value of p. But the oscillation amplitudes
and shapes are strongly determined by the value of p.
To investigate the influence of the mixing parameter
p we increase the mixing extent step-by-step starting
from value p = 0 and we study the dispersion of the
process as a function of p (see the graphs on the fig.
3). We also describe the phase space organization for
different external influences (see fig. 4).
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Figure 4. The phase portraits for different values of the mixing ex-
tent p. Parameters of the system are: k1 = k2 = k3 = 1,
L = 1024 sites. Initial conditions were fixed at values x0 =
y0 = 0.33 for all realizations. The transient processes have been
truncated and only steady-state oscillations are shown. Lines with
arrows represent the saddles manifolds.

When the mixing strength is sufficiently small there
are no observable changes of the system dynamics in
comparison with the situation described in the section
III. The dispersion value is close to zero and there is a
noisy stable focus at point P4. Increasing the value of
p the focus loses its stability and at the critical moment
the global oscillations appear. Now the point P4 seems
to be an unstable focus. Further increase of the mixing
degree results in monotonous linear growth of disper-
sion. It corresponds to oscillation amplitudes increase
as a square root of the value of parameter p. All of these
facts indicate that the global oscillations in the lattice
emerge as a result of the analogue of the supercritical
Hopf bifurcation at the presence of noise. If the mixing
is strong enough, the phase trajectories are located in
the close vicinity of the contour formed by manifolds
of the saddles P1, P2, P3 (see fig. 4) and there is a high
probability for their contingence because of noise per-
turbations. As a esult the corresponding species dies
out and the oscillations are interrupted.
Figure 3 demonstrates three bifurcation curves for dif-

ferent values of the parameter k1. As is easy to see
the bifurcational value pcr depends on the transition
rates of the system. More precisely, it is defined by
the imbalance degree of the parameters ki. The greater
the difference of the parameters, the smaller bifurcation
value pcr. Moreover, in this case the poisoning of the
lattice occurs at the lower pcr value.
Consider now the processes on the lattice giving rise

to such a bifurcational behavior of the system. For this
purpose let’s take a closer look at the system spatial
dynamics. Figure 5 demonstrates a series of snapshots
of the lattice in gray-scale. The homogeneously ini-
tialized lattice (fig. 5 (1)) without mixing (p = 0)
turns to state fig. 5 (2) after 10000 MCS. This clus-
tering state of the lattice has been described in section



Figure 5. A series of snapshots for the lattice (L = 256 sites) in gray-scale. Each of the states is marked by the corresponding gray tone. (1) -
homogeneously initialized lattice (t = 0MCS), (2) - the lattice surface at the moment t = 10000MCS (p = 0), (3) - the lattice surface
at the moment t = 10000MCS (mixing extent p = 0.02). Initial conditions are x0 = y0 = 0.333. The parameters are fixed in the
values k1 = k2 = k3 = 1.

III. The same lattice turns to state fig. 5 (3) when the
mixing (p = 0.02) is added. The last snapshot of the
lattice differs sufficiently from the state (2). The clus-
ters are not homogeneous now. They contain single
units from other clusters relocated by the ”shuffling”.
These units are the centers of future transformations
within the clusters. As a result of mixing implemen-
tation the transformations occur not only at the cluster
borders but throughout lattice. It is clear that relocated
sites more often have the phase which dominates on the
lattice at the moment. Therefore the lattice surface be-
comes colored with dominating tone almost uniformly
and local oscillators demonstrate synchronous behav-
ior.
To demonstrate the synchronization effect obviously

we consider the oscillations of local parts of the lattice
with linear size l = 64 sites. Figure 6 demonstrates two
dependences of phase differences for two local oscilla-
tors in case of mixing absence (p = 0) and p = 0.02.
We introduce the phase of oscillator as follows:

Φ = arctg

( |y − yav|
|x− xav|

)
, (5)

where xav and yav are the coordinates of P4.
In the absence of the mixing the oscillations of differ-

ent parts of the lattice are weakly correlated and their
phase difference is not a constant in time. Increasing
of the mixing extent provides phase synchronization of
the local oscillators and their phase difference fluctu-
ates near the value ∆Φ = 0.

5 Conclusions
We considered the Lattice Lotka–Volterra model with

long range diffusion by means of Kinetic Monte Carlo
simulation. The system dynamics is strongly deter-
mines by the intensity of the mixing effect. Increase
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Figure 6. Phase differences for two local oscillators as a function
of time depending on mixing presence. Parameters values are k1 =
k2 = k3 = 1. Initial conditions are the same as in the fig. 1.
Linear lattice size is L = 256 sites and the linear size of the local
oscillators is l = 64 sites.

of the mixing results in global oscillations appearance
due to the supercritical Hopf bifurcation. The critical
value of the mixing extent pcr depends on the imbal-
ance of the parameters ki and insensitive to the lattice
size. It is established that in the infinite lattice size os-
cillations have periodic form. Further increase of the p
leads to the growth of oscillation amplitude and finally
to the lattice poisoning. It was determined that phase
synchronization of the local oscillators underlies such
a behavior. Mixing implementation provides units ex-
change between the clusters and local oscillators and
results in their synchronous dynamics. It may seem to
be a trivial result that mixing leads to synchronization
effect. But the mixing strength we have considered was
not enough to create a homogeneous distribution of unit
states over the lattice by itself. The obtained results ex-



planation is the partial destruction of the clusters. The
processes of cluster formation serve as some regulating
factor which determine the stability of the fixed point
P4. When mixing processes destroy the cluster struc-
ture the point P4 loses stability and the lattice becomes
poisoned. If the value of p is not so big and clusters
are still exist, the system demonstrates a periodic mo-
tion with corresponding amplitude. Such a result gives
an opportunity of system controlling. We can obtain a
regime required by means of implementation of differ-
ent influences destructing the clusters with a greater or
lesser extent.
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