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Abstract
Bilinear systems under output injection equivalence

are considered. The aim of this paper is to study what
happens when a slight perturbation affects the coeffi-
cients of the matrices defining a bilinear equation in
Cn. For this goal we will use the Arnold’s techniques,
that is to say we will construct a versal deformation of a
differentiable family of bilinear systems which are the
orthogonal linear varieties to the orbits of output injec-
tion equivalent bilinear systems. Versal deformations
provide a special parametrization of bilinear systems
space, which can be applied to perturbation analysis
and investigation of complicated objects like singular-
ities and bifurcations in multi-parameter bilinear sys-
tems.
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1 Introduction
A control bilinear system is a control system which is

described by linear differential equations in such a way
that the control inputs appear as coefficients

ẋ = (A+ uN)x+ bu
y = cx

(1)

with the state vector x ∈ Cn and input vector u ∈ C,
that we will write as a 4-tuple of matrices (A,N, b, c) ∈
Mn(C)×Mn(C)×Mn×1(C)×M1×n(C), we will de-
note byM = {(A,N, b, c)} the space of bilinear sys-
tems. Notice that, the set of linear systems constitute
the subclass of bilinear systems for which N = 0.
The bilinear control systems have been studied with

growing interest in the last years, because of the aris-
ing problems which challenging practical interest. Its
methods and applications cross interdisciplinary on the
borderland between physics and control, proving useful

in areas as diverse as spin control in quantum physics
and the study of Lie semigroups [3].
The stabilization problem analyze the existence of a

constant control which renders the resulting linear sys-
tem to have at least one eigenvalue in the open left
half of the complex plan. Remember that λ(u) ∈ C
is an eigenvalue of (A,N, b, c) under output injection,
if rank

(
A+uN−λ(u)I

c

)
< n.

The eigenstructure of (A,N, b, c) is quite sensitive to
perturbations in the matrices defining the system and
one wants therefore to accurately describe how that
structure can change when small variations are applied
to these coefficients. A manner to approach this prob-
lem can be by means so called versal deformations of
the eigenstructure of the bilinear systems.
Versal deformation, of a differentiable family of

square matrices under similarity [1] was constructed
by V.I. Arnold and has been generalized by several au-
thors to matrix pencils under the strict equivalence [4],
[9], pairs or triples of matrices under the action of the
general linear group [11], pairs of matrices under the
feedback similarity [8]. Versal deformations provide a
special parametrization of matrix spaces, which can be
effectively applied to local perturbation analysis and in-
vestigation of complicated objects like singularities and
bifurcations in dynamical systems [1], [2], [4], [8].
The theory of miniversal deformations is used to de-

termine which classes of bilinear systems (A,N, b, c)
under a previously defined equivalence relation can be
found in all small neighbourhood of a given system.

2 Equivalence relation
Let us consider the space of bilineal systems M =
{(A,N, b, c) ∈ Mn(C) × Mn(C) × Mn×1(C) ×
M1×n(C)}.
Many of the works in bilinear systems has concen-

trated on bilinear systems up to output injection (see
[10], for example). For that we consider the following
equivalence relation that we will call output injection
equivalence.



Definition 2.1. Two 4-tuples (A1, N1, b1, c1) and
(A2, N2, b2, c2) in M are output injection equivalent
if and only if

A2 = PA1P
−1 + V c1P

−1,
N2 = PN1P

−1 +Wc1P
−1,

b2 = Pb1,
c2 = c1P

−1

(2)

for some nonsingular square matrix P ∈ Gl(n;C),
V,W ∈Mn×1(C).

Remark 2.1. For V = 0 and W = 0 the equivalence
relation coincides with the similarity equivalence.

From this definition, it results easily, the following
proposition.

Proposition 2.1. Eigenvalues of the bilinear systems
(A,N, b, c) under output injection are invariant under
this equivalence relation.

Proof.

rank
(
A1 + uN1 − λ(u)I

c2

)
=

rank
(
P V + uW
0 1

)(
A1 + uN1 − λ(u)I

c1

)
P−1 =

rank
(
PA1P

−1+uPN1P
−1−λ(u)I+V c1P−1+uWc1P

−1

cP−1

)
=

rank
(
A2 + uN2 − λ(u)I

c2

)
.

It is easy to prove that in this case and for n = 2, the
systems can be reduced in the following form.

Proposition 2.2. Let (A,N, b, c) be a 4-tuple. Then

a) If c 6= 0

a1)

((
0 1
0 0

)
,

(
0 β1
0 β2

)
,

(
b1
b2

)
,
(
1 0
))

a2)

((
0 0
0 α2

)
,

(
0 1
0 0

)
,

(
b1
b2

)
,
(
1 0
))

a3)

((
0 0
0 α2

)
,

(
0 0
0 β2

)
,

(
b1
b2

)
,
(
1 0
))

In all cases if b1 6= 0 then b1 = 1, and if b1 = 0
but b2 6= 0 then b2 = 1.

b) If c = 0

b1) If matrices A and N have a unique common
one dimensional invariant subspace, then the
system is equivalent to

((
λ1 α
0 λ2

)
,

(
µ1 β
0 µ2

)
,

(
b1
b2

)
,
(
0 0
))

,

and

i) if λ1 6= λ2 then α = 0 and β 6= 0
ii) if λ1 = λ2 and A 6= λ1I then α = 1

and β 6= 0
iii) if λ1 = λ2 and A = λ1I then α = 0

and β 6= 0

b2) If matricesA andN have no common invari-
ant subspaces, then the system is equivalent
to

((
λ1 α
0 λ2

)
,

(
µ1 0
β µ2

)
,

(
b1
b2

)
,
(
0 0
))

,

with α, β 6= 0.
b3) If matrices A and N have two common com-

plementary one dimensional invariant sub-
spaces, then the system is equivalent to

((
λ1 0
0 λ2

)
,

(
µ1 0
0 µ2

)
,

(
b1
b2

)
,
(
0 0
))

,

and as in the case a), if b1 6= 0 then b1 = 1, and
if b1 = 0 but b2 6= 0 then b2 = 1. If b1 6= 0 then
b1 = 1, and if b1 = 0 but b2 6= 0 then b2 = 1.

The case c = 0 the possible reduced forms are an
extension to 4-tuples (A,N, b, c) from a classification
theorem for couple of matrices (A,N) given but not
explicit in [6]. The paper is focused on the case c 6= 0
where the input injection is allowed.
For c 6= 0 we have the following result

Proposition 2.3 ([7]). Let (A,N, b, c) be a 4-tuple
with c 6= 0, if (A, c) and (N, c) are observable pairs
and

rank
( c
c(A−N)

)
= 1,

rank
( c

cA
c(A2−N2)

)
= 2,

...

rank


c
cA
...

cAn−2

c(An−1−Nn−1)

 = n− 1.

(3)

Then, the 4-tuple (A,N, b, c) is equivalent under equiv-
alence relation considered to the following 4-tuple



(Ar, Nr, br, cr). where

Ar =

( 0 0 ... 0 0
1 0 ... 0 0

. . .
0 0 ... 1 0

)
,

Nr =

 α1,1 α1,2 ... α1,n−1 0
1 α2,2 ... α2,n−1 0

. . .
0 0 ... 1 0

 ,

br =

 b1
b2
...
bn

 ,

cr = ( 0 0... 0 1 ) .

3 Tangent and normal spaces
Equivalence relation defined in (2) may be seen as in-

duced by the action of the Lie group G = Gl(n;C) ×
Mn×1(C)× C0 × C0 in the following manner:

α(g, x) = x1

where

x1 = (A1, N1, b1, c1)

A1 = PAP−1 + V cP−1,

N1 = PNP−1 +WcP−1,

b1 = Pb,

c1 = cP−1) ∈M,

g = (P, V,W ) ∈ G, x = (A,N, b, c) ∈M.

(4)

Let us fix a 4-tuple x0 = (A0, N0, b0, c0) ∈ M and
define the mapping

αx0
(P, V,W ) = α((P, V,W ), x0) ∈M. (5)

The equivalence class of the 4-tuple x0 with respect to
the action of G is called the orbit of x0 and denoted by

O(x0) = {αx0
(P, V,W ) | ∀(P, V,W ) ∈ G}. (6)

The mapping αx0
is differentiable, and O(x0) is a

smooth submanifold ofM.
Let TeG be the tangent space to the manifold G at the

unit element e = (I, 0, 0) ∈ G. Since G is an open
subset of Mn(C)×Mn×1(C)×Mn×1(C), we have

TeG =Mn(C)×Mn×1(C)×Mn×1(C)

and, sinceM is a linear space,

Tx0
M =M.

Let dαx0
: TeG −→ M be the differential of αx0

at
the unit elements e. Using (5), we find the following
proposition.

Proposition 3.1. Let x0 = (A,N, b, c) ∈M

dαx0
(g) =

([P,A] + V c, [P,N ] +Wc,Pb,−cP ) ∈M
∀g = (P, V,W ) ∈ TeG

(7)

Proof. It suffices to compute the first approximation of
αx0

(I + εP, εV, εW ):

αx0
(e+ ε) ≈

x0 + ε([P,A] + V c, [P,N ] +Wc,Pb,−cP )
where e+ ε = (I + εP, εV, εW ).

The mapping dαx0 provides a simple description of the
tangent space Tx0O(x0), and as a corollary its normal
complement (Tx0

O(x0))⊥ for any inner scalar product
defined onM.

Proposition 3.2. The tangent space to the orbit of the
4-tuple x0 is given by

Tx0
O(x0) =

{([P,A] + V c, [P,N ] +Wc,Pb,−cP ) |
∀(P, V,W ) ∈ TeG}

(8)

The Euclidean scalar product in the spacesM consid-
ered in this paper is defined as follows

〈x1, x2〉 = tr(A1A
∗
2)+tr(N1N

∗
2 )+tr(b1b

∗
2)+tr(c1c

∗
2),
(9)

with xi = (Ai, Ni, bi, ci) ∈M, i = 1, 2 and where A∗

denotes the conjugate and transpose of a matrix A and
tr the trace of corresponding matrices.
Having defined a scalar product we can compute the

orthogonal space to the tangent space.

Theorem 3.1. Let x0 = (A,N, b, c) ∈ M be a 4-
tuple, then (X,Y, z, t) ∈ (Tx0

O(x0))⊥ if and only if

[A,X∗] + [N,Y ∗] + bz∗ − t∗c = 0
cX∗ = 0
cY ∗ = 0

 (10)

Proof. Calling α = ([P,A] + V c, [P,N ] +
Wc,Pb,−cP ) and β = (X,Y, z, t), then

< α, β >=
tr ([P,A]X∗ + V cX∗) + tr ([P,N ]Y ∗ +WcY ∗)+

trPbz∗ + tr − cP t∗ =
tr ([A,X∗] + [N,Y ∗] + bz∗ − t∗c)P+

tr cX∗ + tr cY ∗ = trMQ

where

M =

[A,X∗] + [N,Y ∗] + bz∗ − t∗c)
cX∗

cY ∗





Q =

P V
W

 .

Obviously, the condition of the theorem is sufficient.
For the necessity, remark that in fact we have

trMQ = trM1Q1

where

M1 =

[A,X∗] + [N,Y ∗] + bz∗ − t∗c)
cX∗

cY ∗



Q1 =

 P M1 M2

M3 V M4

M5 M6 W

 .

because matrices Mi, i = 1, . . . , 6 do not appear in the
computation. Therefore, the first matrix should be the
null matrix.
So, the proof is concluded.

Example 3.1. Let us consider a bilinear system

x0 = (A0, N0, b0, c0) =((
1 1
0 1

)
,

(
0 1
1 0

)
,

(
0
1

)
,
(
1 0
))
.

(11)

According to Theorem 3.1, the elements (X,Y, z, t) ∈
(Tx0
O(x0))⊥ can be found by solving the linear sys-

tem (10). As a result, we obtain a general element of
(Tx0
O(x0))⊥ in the form (X,Y, z, t) with

X =

(
0 x3
0 x4

)
, Y =

(
0 −x3
0 −x4

)
,

z =

(
z1
0

)
, t =

(
0 x4 + z1

) (12)

where x3, x4, z1 ∈ C are arbitrary parameters; so
dim(Tx0

O2(x0))
⊥ = 3.

4 Versal deformation
LetM be a differential manifold with the equivalence

relation defined by the action of a Lie group G. The G-
action is described by the mapping (g, x) −→ α(g, x),
where x, α(g, x) ∈ M and g ∈ G. Let U0 be a neigh-
borhood of the origin of C`. A deformation x(λ) of x0
is a smooth mapping

x : U0 −→M

such that x(0) = x0. The vector λ = (λ1, . . . , λ`) ∈
U0 is called the parameter vector. The deformation
x(λ) is also called the family of 4-tuples of matrices.
The deformation x(γ) of x0 is called versal if any de-
formation y(µ) of x0, where µ = (µ1, . . . , µk) ∈ U ′0 ⊂

Ck is the parameter vector, can be represented in some
neighborhood of the origin in the following form

y(µ) = α(g(µ), x(φ(µ))), µ ∈ U ′′0 ⊂ U ′0, (13)

where φ : U ′′0 −→ C` and g : U ′′0 −→ G are differ-
entiable mappings such that φ(0) = 0 and g(0) = e.
Expression (13) means that any deformation z(ξ) of
x0 can be obtained from the versal deformation x(γ)
of x0 by an appropriate smooth change of parame-
ters γ = φ(ξ) and equivalence transformation g(ξ)
smoothly dependent on parameters. The versal defor-
mation with minimal possible number of parameters `
is called miniversal.
The following result, proved by Arnold [1] for
Gl(n;C) acting on Mn×n(C), and generalized by Tan-
nenbaum [11] for a Lie group acting on a complex man-
ifold, provides the relation between the versal deforma-
tion of x0 and the local structure of the orbit of x0.

Theorem 4.1. 1. A deformation x(λ) of x0 is versal
if and only if it is transversal to the orbit O(x0) at
x0.

2. Minimal number of parameters of a versal defor-
mation is equal to the codimension of the orbit of
x0 inM, ` = codimO(x0).

In our particular setup.
Let us denote by {c1, . . . , c`} a basis of an arbitrary

complementary subspace (Tx0O(x0))c to Tx0O(x0)
and by {n1, . . . , n`} a basis of Tx0O(x0)⊥;

Corollary 4.1. The deformation

x(λ) = x0 +
∑̀
j=1

cjλj (14)

is a miniversal deformation.

If we take cj = nj , j = 1, . . . , `, in (14), then the
corresponding miniversal deformation is called orthog-
onal.

Example 4.1. We explicit a basis {c1, . . . , c`} for the
case 0 1 0

0 0 1
0 0 0

 ,

 0 0 0
1 0 0
0 1 0

 ,

 0
0
1

 ,
(
1 0 0

)
A simplest miniversal deformation is (A,N, b, c) +
(X,Y, z, t) with

(X,Y, z, t) =0 x6 x7
0 0 x8
0 0 0

 ,

0 y4 y7
0 y5 y8
0 0 y9

 ,

 z1
0
0

 ,
(
0 0 0

)
The basis is obtained placing a 1 in a single parameter
and 0 otherwise, for each one of them.



Given a bilinear system x0 = (A,N, b, c), the ho-
mogeneity of the orbits allow us to consider canoni-
cal reduced forms to write down explicitly the bases
{c1, . . . , c`} and {n1, . . . , n`}.

5 Structural stability
In a similar way to [5], from the miniversal deforma-

tion in Section 3.5 we can deduce conditions for a 4-
tuple of matrices to be structurally stable, according to
the usual definition.

Definition 5.1. A 4-tuple of matrices (A,N, b, c) ∈M
is called structurally stable if and only if it has a neigh-
borhood formed by 4-tuples equivalent to it-that is to
say, if (A,N, b, c) is an interior point of its orbit.

Because of homogeneity of the orbits, we have:

Proposition 5.1. A 4-tuple of matrices (A,N, b, c) ∈
M is structurally stable if and only if so are all other
4-tuples in its orbit.

Structural stability is equivalent to the nonexistence of
deformations in the following sense:

Proposition 5.2. A 4-tuple of matrices x0 =
(A,N, b, c) ∈ M is structurally stable if and
only if

dimTx0
O(x0)⊥ = 0.

Proof. Analogous to ([5], proposition (4.3)).

From Sections 3 and 4 it is immediate to see how The-
orem 3.1 can be used to characterize the structural sta-
bility of a 4-tuple of matrices, because the above di-
mension is zero if and only if the only solution of the
system (10) in Section 3 is the zero one.
In our particular setup all reduced forms presented

have continuous invariants so, all miniversal deforma-
tion are not zero. We can consider strata defined as
the infinite union of orbits of the 4-tuples having the
same type of reduced form varying only on the values
of continuous invariants. It is obvious that the strata
are invariant under equivalence defined and we have
the following proposition

Proposition 5.3. For n = 2.

i) The stratum consisting of 4-tuples of the type a1)
in 2.2

S(x0) =
{((

0 1
0 0

)
,

(
0 β1
0 β2

)
,

(
b1
b2

)
,
(
1 0
))}

with β1 6= 0 is stable under the equivalence rela-
tion considered.

ii) The remaining strata consisting of 4-tuples of the
type a1) with β1 = 0, a2), a3), b1), b2), b3) in
3.2 are not stable under the equivalence relation
considered.

Proof. i) It suffices to compute a miniversal deforma-
tion of the 4-tuple

((
0 1
0 0

)
,

(
0 β1
0 β2

)
,

(
b1
b2

)
,
(
1 0
))

,

obtaining

((
0 1
0 0

)
,

(
0 β1 + y1
0 β2 + y2

)
,

(
1

b2 + z2

)
,
(
1 0
))

that obviously, all 4-tuples on the deformation are not
in the orbit but in the same stratum.
ii) It is easy to observe that any small perturbation of

the 4-tuples in these strata contain 4-tuples belonging
in the stratum of the type a1).
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