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Abstract
The regular spiral arrangement of various parts of bi-

ological objects (leaves, florets, etc.), known as phyl-
lotaxis, could not find an explanation during several cen-
turies. Some quantitative parameters of the phyllotaxis
(the divergence angle being the principal one) show that
the organization in question is, in a sense, the same in
a large family of living objects, and the values of the
divergence angle that are close to the golden number
prevail. This was a mystery, and explanations of this
phenomenon long remained “lyrical”. Later, similar pat-
terns were discovered in inorganic objects. After a se-
ries of computer models, it was only in the XXI cen-
tury that the rigorous explanation of the appearance of
the golden number in a simple mathematical model has
been given. The resulting pattern is related to stable fixed
points of some operator and depends on a real parame-
ter. The variation of this parameter leads to an inter-
esting bifurcation diagram where the limiting object is
the SL(2,Z)-orbit of the golden number on the segment
[0,1].

We present a survey of the problem and introduce a
multidimensional analog of phyllotaxis patterns. A con-
jecture about the object that plays the role of the golden
number is given.

Key words
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1 Introduction. How do Plants Know the Golden
Number?

We begin with a small talk about botany, but it is only
to start, as we will see in the sequel: the article is mostly
about mathematics.

It has been known for several centuries that the ar-
rangement of plant organs, e.g., leaves or branches

around a stem, seeds on a pine cone or a sunflower head,
florets, petals, scales, and other units usually shows a
regular character, see the pictures below.

Figure 1. Spirals on the sunflower head and the marguerite flower.

This phenomenon attracted such scientists as
Leonardo da Vinci (XV century), Johannes Kepler
(XVI century), Johann Wolfgang von Goethe (XVIII
century). The latter was not only a poet, but he also was
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involved in a natural science, especially in morphology
(the latter term was invented by him) and anatomy of
plants and animals.

Phyllotaxis (ancient Greek: “phýllon” means “leaf”,
and “táxis”, “arrangement”) is a phenomenon of leaf
(and other plant elements) arrangement. There is a va-
riety of phyllotaxy patterns among plants, but only two
of them prevail. One of them, in which leaves around
the stem, or florets in a daisy flower, etc. are arranged
in spirals (see Fig. 1, 2), is the most widespread and at
the same time intriguing. This type of phyllotaxy was
described in detail by brothers Bravais [Bravais & Bra-
vais, 1837], D’Arcy Thompson [Thompson, 1917], and
by many others in the XX century.

Figure 2. Spirals on the stem of New Zealand’s national symbol: the
fern tree.

The other one, the whorled phyllotaxis (example: pine
or araukaria branches), is more comprehensible. In
the latter type of phyllotactic pattern, the leaves are ar-
ranged, for instance, in triplets: a triplet of leaves at each
level (one can see, on other plants, 2, or 4, etc. leaves at
each level). In Fig. 3, you can see that triples are turned
at approximately 60◦ one against another (and this lets
more light for leaves).

In the spiral pattern, one can usually see two families
of parallel spirals: the members of one family turn clock-
wise, the members of the other counter-clockwise.

If you count the numbers of spirals in both families,
you usually get a pair of numbers like this: 3 and 5,
5 and 8, 8 and 13, etc., these pairs are the pairs of
consecutive Fibonacci numbers (fn, fn+1) of the series
1,1,2,3,5,8,13,21,34,. . . where fn+2 = fn+1 + fn. We
will say in this case that the species in question obey
the (fn, fn+1) phyllotaxy pattern. As is well known,
the sequence of ratios fn/fn+1 tends to the golden

number ϕ =
√
5−1
2 = 0.618033 . . . . There exist,

in nature, species with (fn, fn+1)-phyllotaxis where n
is rather large, for example, you can encounter even
the (133, 244) pattern on a good sunflower head, with
133
244 = 0.618025 . . . . One can get much surprised and
seek an explanation of how do plants “know” the golden
number with such a good accuracy!

As we will see, there is no mysticism in this phe-
nomenon, nor must an intricate biological mechanism
be involved in the explanation: a very simple geomet-
ric model can give an answer.

Figure 3. Whorled phyllotaxis: leaves are arranged in triplets: a
triplet of leaves at each level.

2 Description of the Phyllotaxis Phenomenon
Here we present a simple model that mimics the phe-

nomenon of the spiral phyllotaxis on a stem and intro-
duce some notions that will be later used in the explana-
tion of the phenomenon.

2.1 Cylindrical Model
In this model, the stem is represented by a semi-

cylinder, whereas leaves, branches, and other morpho-
logical units are represented by points on its surface. The
thing is that these units are very small at the stage when
they appear. We formulate a rule according to which
these points are being placed, one by one. The author
used this model [Lodkin, 1987] in his early computer
experiments, as well as the authors of [Levitov, 1991;
Douady & Couder, 1992a; Douady & Couder, 1992b] et
al.

We take the semi-cylinder T× [0,∞), with T = R/Z
a circle, and consider a sequence of its points ~pk =
(2πxk, hk), k ∈ N, xk ∈ [0, 1), hk ≥ 0. The number k
has the meaning of the age of the unit (primordium). The
vertical step hk+1 − hk is called the internodal distance,
the difference αk = xk+1 − xk mod 1 the divergence
angle, see Fig. 4.

Usually it turns out that the divergence angle and the
internodal distance are almost constant. This makes
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Figure 4. Cylindrical model.

us assume that the vertical coordinates hk constitute an
arithmetic progression hk = hk, and the angular coordi-
nates xk = xk mod 1 = {xk} are the fractional parts
of an arithmetic progression.

We use this model in Subsection 2.6 where we explain
the rule of placing points and discuss the effect. In a
real plant, the coordinates hk do not have much sig-
nificance (except at an early stage) because the intern-
odal distance constantly increases (the so-called inter-
calar growth) while the plant grows, whereas the diver-
gence angle usually stabilizes to some limit x that char-
acterizes the phyllotaxy pattern. The remarkable fact
is that in most cases x is close to the golden mean ϕ
or, rarely, to some number of the form aϕ+b

cϕ+b , where
a, b, c, d ∈ Z, ad− dc = 1. In the latter case we say that
x = g(ϕ), where g =

(
a b
c d

)
is an element of SL(2,Z),

the group of integer matrices with determinant 1.

2.2 Accompanying Lattice
The set of points

L0
x,h = {~pk = (kx mod 1, kh) | k ∈ N} ⊂ [0, 1)×R+

corresponding to the phyllotaxis with constant parame-
ters x and h forms a lattice on the cylinder whose devel-
opment on the plane we represent by the strip [0, 1]×R+

with two border lines identified (Fig. 5). This lattice can
be extended to the full lattice

Lx,h ⊂ R2

with basis consisting of two vectors ~u = ~p1 = (x, h)
and ~v = (1, 0). In other words,

Lx,h = {m~u+ n~v | m,n ∈ Z}.

Figure 5. LatticeL0
x,h and its disk image.

2.3 Disk Model
A similar representation of the phyllotaxis such as one

to be observed in a daisy flower or in a sunflower head
may be obtained on the disk x2 + y2 ≤ 1 if we take the
images of the points ~pk under the mapping

(xk, hk) 7→ (e−hk cos 2πxk, e
−hk sin 2πxk),



156 CYBERNETICS AND PHYSICS, VOL. 8, NO. 3, 2019

or, in the complex presentation,

zk = 2πxk + ihk 7→ exp(izk).

The center of the disk corresponds to the infinity on the
cylinder.

Simple transformations can also send one of the pat-
terns above to a pattern on the geometrical cone that is a
model of a pine or spruce cone.

2.4 Parastichies
In the cylindrical model, the parastichies (the Greek

“para” means “near”, and “stixos”, row) are imaginary
straight lines passing through lattice points. The indices
(= birth dates) of points in one parastichy form a pro-
gression

Pm,k = mN + k = {m+ k, 2m+ k, 3m+ k, . . . }.

Given positive integer m ∈ N, one obtains m such par-
allel parastichies for k = 0, . . . ,m− 1.

The best discernible parastichies form two families:
m parastichies going clockwise around the stem and
n parastichies going anticlockwise.

This pattern is called the (m,n)-phyllotaxis.
It should be noted that all points of the lattice L0

x,h

belong to a single line (corresponding to a cylindrical
spiral) called the generative spiral which is usually diffi-
cult to see when h is small because its inclination is very
small.

In the disk model, all parastichies look like spirals.
If one continuously changes h leaving x fixed, he will

see that the most discernible parastichies go and come:
one pair disappears, another becomes visible.

There is a simple rule that translates the divergence an-
gle x into the series of parastichy numbers pairs (m,n)
that appear while h decreases from ∞ to 0. Take the
development of x into a continued fraction

x = [0; a1a2a3 . . . ] =
1

a1 +
1

a2 +
1

a3 + . . .

and consider its rational approximations (convergents)

ri = [0; a1 . . . ai] =
pi
qi
.

Then the pairs of parastichies that are visible at the con-
venient values of h are the pairs (m,n) = (pi, qi), i =
1, 2, . . . .

Thus, the golden number ϕ = [0; 1, 1, 1, . . . ] corre-
sponds to the Fibonacci pairs (fi, fi+1) as in this case

fi = [0;

i︷ ︸︸ ︷
1, . . . , 1], and we come to the sequence of ratio-

nal convergents of ϕ:

[0; 1] =
1

1
, [0; 1, 1] =

1

2
, [0; 1, 1, 1] =

2

3
, . . . .

This correspondence gives a practical means to mea-
sure the divergence angle on a real biological object in
which units are far from being points and it is very diffi-
cult to find the consecutive units because chronological
neighbors are very far from each other on the cylinder
surface. Instead, one can simply count the left and right
parastichies and take the ratio m

n as an approximation to
x (by the way, a very good one: |x− m

n | <
1
n2 ).

3 Attempts toward Finding an Explanation
Two problems arise:

Why phyllotactic pattern is usually a lattice?
How does a plant know the golden number?

Some researchers tried to find an explanation of the
existence of parastichies by looking for morphological
relationship between their units. For instance, they were
looking for some material links like vessels joining the
elements of a parastichy. They do exist sometimes, but
they materialize post factum, after the relative position
of the primordia is fixed at the early stage of the mor-
phogenesis.

3.1 Global vs local Mechanism
Much more realistic approach was based on the ex-

planation of the regular phyllotaxis from the point of
view of better illumination of the whole leaf system of
the grownup plant, or some similar factor (the search of
global mechanisms).

In more recent time, theories based on local mecha-
nisms of consecutive appearance of the primordia pre-
vail. Local mechanism theories were motivated to a great
extent by the study of the pictures of the apex (the top of
the growing stem) region made with an electronic mi-
croscope (Fig. 61). The character of the appearance of
primordia in this area suggested the geometric theory,
which states that the new primordium seeks for the least
crowded place to appear at. The other one, the diffusion-
inhibition model, is based upon the conjecture that the
apex and the existing primordia emits some substance
(inhibitor) that is gradually spreading out, and the new
primordium is looking for a place with the least concen-
tration of this substance.

3.2 Modeling, Computer Experiments
The geometric model suggests the following algorithm

of the appearance of primordia. We take the cylin-
der mentioned above and place the points at the levels
hk, k = 1, 2, . . . , one point at each level (h being the pa-
rameter of the model). Given the points ~p1, ~p2, . . . , ~pn,
we put the point ~pn+1 at the (n+1)th level at such place
xn+1 that maximizes the minimal distance of the new
point from the existing ones. Using this simple scheme,

1These pictures are taken from the internet.
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Figure 6. The real apex under the electronic microscope. The num-
bers mean the age of primordia

in 1986, the author has modeled on a computer the pat-
terns for various values of h and observed that for small
values of this parameter, the points pk formed a lattice
on the cylinder with divergence angle close to 137.5◦

or 222.5◦, that is, 2πϕ or 2π(1 − ϕ). Moreover, it
was possible on a computer to place the first n points
at random, and in 4 or 5 steps the regular lattice pattern
reappeared. Later, S. Douady and Y. Couder [Douady
& Couder, 1992a; Douady & Couder, 1992b] executed
extensive computer simulation with various parameters.
In [Smith et al., 2006], computer simulation was based
upon the diffusion–inhibition model. It became obvious
that a simple mechanism works and the lattice pattern is
stable.

3.3 Physical Experiments
More evidence to the fact that the regular phyllotac-

tic picture was due to the reasons more simple than bi-
ological ones was brought up when L. S. Levitov [Levi-
tov, 1991] made similar experiments with layered semi-
conductors. An impressive experiment was made by
Douady and Couder. They let magnetic drops gradu-
ally, one by one, fall down into the center of a saucer
filled with oil. The repulsive force made the drops scat-
ter across the saucer and form patterns resembling the
sunflower head.

3.4 Rigorous Results
It comes to one’s mind that the lattice arrangement

of points minimizes some energy. Assuming this,
L. S. Levitov has found the value of the parameter x that

minimizes the total energy

E =
∑
i 6=0

U(||~pi − ~p0||)

of the lattice Lx,h for the potential U(d) = d−s and
various values of the constant parameter h.

P. Atela, C. Golé and S. Hotton [Atela et al., 2002] in-
vestigated a dynamical system on the multidimensional
torus Tn+1 based on local rules. For each h, these au-
thors considered the operator Tn+1 → Tn+1. The mean-
ing of this operator is the following. Given the points
~p0, . . . , ~pn at n+1 consecutive levels, we move the con-
figuration one level down and put a new point at the nth
level that gives minimum distance of the new point from
the set of n its predecessors. Passing to the coordinates
yk = xk+1 − xk mod 1 (due to the symmetry of the
model), one comes to the operator Φ : Tn+1 → Tn+1 of
the form

(y0, y1, y2, . . . , yn) 7→
(y1, y2, y3, . . . , yn, φ(y0, y1, y2, . . . , yn))

where the function φ is defined by the y-coordinate of
the point ~pn+1 optimal in the sense of Subsect. 3.2.

It was shown that the fixed points (vectors) for this
operator are constant sequences X = (x, x, . . . , x) that
correspond to the spirals with constant divergence angle
x = x(h) and that these fixed points are stable, i.e., if
one takes a vector Y = (y0, . . . , yn) with |yi − x| small
enough, then ΦkY → X as k →∞.

The two investigations give similar results showing
that global optimality can be reached by local optimiza-
tion.

3.5 Bifurcation Diagram

Figure 7. Bifurcation diagram.

The dependence of the stable divergence angle x on the
internodal distance h can be represented by the following
diagram (Fig. 7)2. One sees that when h is big enough,

2This diagram appeared in van Iterson’s investigation [van Iterson,
1907].
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Figure 8. Sail and Voronoı̈ cell.

there is only one option x = 0.5: it is clear that the op-
timal spacing of each new point is right on the opposite
side of the cylinder. When h decreases, there is a bifur-
cation point at some its critical value, after which the op-
timal point must be displaced either to the right or to the
left, and thus the vertical line x = x(h) is replaced with
two branches. We say that the symmetry breaking of the
model takes place: during the further slowing down of h,
there comes a series of points where the branches have
turning points. It can be shown that at each such point
there is no alternative: the system chooses only one of
two branches, turning alternatively to the right or to the
left [Atela et al., 2002; Bergeron and Reutenauer, 2019;
Levitov, 1991].

The meaning of the smooth segments of the diagram is
the following. When we move along a segment, the lat-
tice remains such that the most visible parastichies cor-
respond to a (m,n) pattern. For the principal branch
marked AB of the diagram, m and n are consecutive Fi-
bonacci numbers: (1,1), then (1,2), (2,3), (3,5), and so
on. The vertices of the broken line correspond to the
pattern change. This change is due to the fact that points
of the lattice which were distant at the parameter value
corresponding to one segment become close at smaller
values of h. This broken line approaches the point ϕ on
the h = 0 axis.

3.6 Sail and Diophantine Approximation
Originally, the Klein polygon (see, e.g., [Arnold, 2001;

Korkina, 1995; Karpenkov, 2004]) is the convex hull of
the intersection of a lattice with a quadrant on the plane,
and the sail is its border. Due to periodicity and central
symmetry of the lattice Lx,h (Subsect. 2.2), we see that
the intersection of Lx,h with a half-stripe (n, n+1)×R+

does not depend on n ∈ Z. Taking n = 0, we come to

L0
x,h. Call the border of its convex hull the sail again. If

x is irrational, no point of the sail lies on the border of
the half-stripe, so the sail is an infinite broken line whose
vertices are the points ~pk = (kx mod 1, kh) for some
k ∈ N.

Now we focus on these numbers k. Recall the se-
quence ri = pi/qi of convergents of the continued frac-
tion expansion x = [0; a1a2a3 . . . ] of the real number x.
The numbers pi, qi are exactly the indices k of the ver-
tices ~pk of the sail approaching the ray 0 × R+ in turns
from the left and from the right. In Fig. 8, these k are
the numbers 1,2,5,12,29,70,. . . . The elements ai of the
continued fraction are well seen on the sail: they are the
so-called integer lengths of the segments of the broken
line. This means that ai is the number of points of the
lattice that lie on the ith segment, minus 1. For the sail
corresponding to x = 0.70707 · · · = [0; 12222 . . . ] in
Fig. 8, we have a1 = 1 (the segment [~p1, ~p2] contains
two lattice points), a2 = 2 (the segment [~p1, ~p5] contains
three lattice points), a3 = a4 = a5 = 2, and so on, and
the rational convergents ri are 1, 25 ,

5
12 ,

12
29 ,

29
70 , . . . .

The lattice points can have more or less uniform dis-
tribution, and the degree of uniformity is in close rela-
tion with the form of the Voronoı̈ cell that is the polygon
centered at some point of the lattice, say, ~p0 = ~0, con-
sisting of the points of the plane that are closer to the
center than to any other point of the lattice. The more
protruded is this cell, the less uniform is the lattice. Con-
versely, the closer the cell to a disk, the more uniform (in
a sense we do not want to precise here), or isotropic, or
good looking is the lattice, see Fig. 9. It is known that
in the one-dimensional case the most uniform (or low-
discrepancy) filling of the unit interval by the points kx
mod 1, k = 1, . . . n is attained at x = ϕ. It is possi-
ble that similar two-dimensional sequences can be found
among the lattices L0

x,h.

Figure 9. The Voronoı̈ cells for a random and the golden lattices.
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Now we can say how to describe in what sense the lat-
tices corresponding to the golden number are the optimal
ones.

Let us watch how the Voronoı̈ cell V = V (x, h) be-
haves when we vary h keeping x fixed. Let Γ be the
border of V . We call the asphericity of V the number

A(V ) =
max{||t||

∣∣ t ∈ Γ}
min{||t||

∣∣ t ∈ Γ}
.

It can be shown that the variation of A(V ) while h
tends to 0 is minimal when x = ϕ or 1 − ϕ. This
means that V remains to be a hexagon which is close
to the regular one during the whole variation of the in-
ternodal distance h as compared to other values of x,
and the alternating most visible parastichies keep being
most isotropic, i.e., they intersect each other at the angle
that is not far from 60◦. In terms of the sail, this means
that the integer lengths of the broken line (the border
of the sail) are the minimal ones: all equal to 1 (recall
that ϕ = [0; 1, 1, 1, . . . ]). It is known in the Diophan-
tine approximation theory that ϕ is the real number the
worst approximated by rational numbers. See [Lodkin,
2019] for a more detailed exposition of the relation be-
tween sail geometry and Diophantine properties of x in
terms of the so-called cardiogram of x. In [Bergeron and
Reutenauer, 2019], a similar characteristic of the bad ap-
proximation, in terms of the “growth function”, is given.

4 Multidimensional Generalizations
Here we present an analog of the phyllotaxy theory in

higher dimension.

4.1 Cylindrical Model
Instead of the circle, we take a multidimensional torus

Tn = Rn/Zn, n ∈ N,

with flat metric

d(~x, ~y) = dist(~x, ~y+Zn) = min{||~x−~y+~k|| | ~k ∈ Zn}.

In Rn+1 = Rn × R, consider the half-cylinder

C = Tn × [0,+∞).

also with natural flat metric. For a positive real h,
one can construct a sequence of points ~pk ∈ C as
follows (cf. Subsect. 3.2). Given the points ~pk =
(~vk, kh), k = 0, . . . ,m, with ~vk ∈ Tn, take ~pm+1 to
be the point that minimizes the distance from ~pm+1 to
the set {~p0, . . . , ~pm}. One can start with one point, say,
~v0 = ~0, or with any finite number of points, and con-
struct a sequence following this rule. It is clear that the
position of the point ~pm+1 on the (m+ 1)th level is de-
termined by not more than

√
n

2h predecessors.
We can outline a plan and set up a number of conjec-

tures.
Conjecture 1. As in the case n = 1, the vectors ~vk+1−

~vk tend to some limit ~v = ~v(h) (the constant divergence
vector).

Question 1. What are the possible such ~v, for each h?
How does the analog of van Iterson’s diagram look like?

Let L0
~v,h = ({~pk = k~v mod Zn), kh | k ∈ Z+} ⊂ C

be the lattice generated by the vector ~v ∈ Rn.
Question 2. What are the optimal lattices in the ener-

getic sense (cf. Subsect. 3.4)?
Question 3. What vectors are the limits of the princi-

pal branches of the bifurcation diagram as h→ 0?
In the case n = 2, we have a candidate for such a

vector. Its choice is motivated by the relation, in the one-
dimensional case, between geometrical properties of the
lattices L0

x,h and Diophantine properties of the number
x, and the hope this relation persists in higher dimension.

In the author’s work with his former student S. M. Bli-
udze, this relation was explored in dimension 2.

Theorem ([Bliudze, 1998], unpublished) The worst
approximated (in some precise sense) vector in R2 is
~vψ = (ψ,ψ2), where ψ = 1.3247 . . . is the real root
of the polynomial x3 − x− 1 (the plastic number).

The notion of the cardiogram (see Subsect. 3.6) is de-
fined in an arbitrary dimension. In the case of the family
of lattices {L0

~v,h, h > 0}, this characteristic is presum-
ably extremal for v = vψ (cf. ϕ and its cardiogram).
Anyway, these vector and corresponding lattices attract
one’s attention in some other aspects. For instance, this
family of lattices is interesting in what concerns discrep-
ancy, or the question on the most evenly-distributed sets
of points, cf. [Schretter et al., 2011].

Now we can reverse the direction nature → math to
math→ nature and ask the question: Is there an object
in nature (e. g., a sort of fruit) that corresponds to our
L0
~vψ,h

lattice?

4.2 Compact Model
Like in Subsect. 2.3, we can transform the lattice in the

half-cylinderC into the lattice in the compact domainD.
This can be done, for example, as follows: T (x, y, h) =
(X,Y, Z), where

X =(1 + 0.5e−h cos 2πx) cos 2πy,

Y =(1 + 0.5e−h cos 2πx) sin 2πy,

Z =0.5e−h sin 2πx.

Here D is a toric body, and the images of the lattice
condense around the circle X2 + Y 2 = 1, Z = 0 (see
Fig. 10).

Another transformation with

X =e−h(1 + cos 2πx) cos 2πy,

Y =e−h(1 + cos 2πx) sin 2πy,

Z =e−h sin 2πx

effectuates a one-point compactification of the half-
cylinder. In this case the images of the lattice points
condense around the origin (see Fig. 11).

These “3D-fruits” may be considered as analogs of a
sunflower head.
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Figure 10. The toric images of a random and the platinum 3D-
lattices.

Figure 11. The image of the platinum lattice in the 1-pt compactifi-
cation.

5 Conclusion
We sketched an introduction to multidimensional phyl-

lotaxy theory and its possible connections with Diophan-
tine approximation of vectors, lattices of least energy,
discrepancy theory in higher dimension, et al. which will
be extended in forthcoming publications. Also, we sug-
gested a 2D-analog of the golden number.
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