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Abstract  
This work investigates nonlinear model reduction in 

excited elastic structures that contain essential 

inertial nonlinearities.  To achieve high fidelity in 

nonlinear resonant response prediction, linear normal 

modes may not be sufficient for order reduction.  
Another natural way to obtain reduced order models 

is to use nonlinear normal modes to perform model 

reduction.  These nonlinear normal modes allow for a 

master-slave separation of degrees of freedom where 

these modes are constructed based on the multiple 

time scale approximation.  For the elastic structure 

studied, the nonlinear modes based reduced model 

shows an over-prediction of the softening 

nonlinearity compared to the complete system. 
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1  Introduction 

  There are essentially two approaches to constructing 

reduced order models of nonlinear systems: approach 

based on linear transformation or linear modal basis 

functions, and approaches based on nonlinear normal 

modes or nonlinear invariant manifolds.  For 

approaches based on some form of linear 

transformation, one can refer to Nayfeh et al. [2005] 

who, based on their implementation procedures, 

further classify these into two categories: node 

methods and domain methods.  Both of these 

categories of reduced-order models are obtained by 

one of the following three linear processes: linear 

static reduction, proper orthogonal decomposition 

(POD) (also known as singular value decomposition 

(SVD), Karhunen-Loève decomposition (KLD), or 

principle component analysis (PCA)), and reduction 

based on linear undamped modal basis functions.  A 

representative node model reduction method is 

“Guyan reduction” (Guyan [1965]).  The domain 

methods eliminate spatial dependence in the PDEs 

using the Galerkin method.  Here, the displacements 

are expressed as a linear combination of a complete 

set of basis functions.  One approach to obtaining 

basis set is based on generating time series of 

snapshots describing the variation of states of the 

structure over time, and then applying proper 

orthogonal decomposition method (POD) to obtain 

‘optimal’ mode shapes (e.g., see Hung et al. [1997]).  

The other approach is based on using quasi-

comparison functions (Meirovitch [1997], Wang and 

Bajaj [2007]), or a direct solution of the linear 

undamped eigenvalue problem for the structure 

(Balachandran and Nayfeh [1990]). 

 The nonlinear modal reduction through nonlinear 

normal modes was first suggested by Shaw and 

Pierre [1993].  In the works of Pecheck et al. [2001, 

2002], the nonlinear modal reduction of a nonlinear 

rotating beam through nonlinear normal modes was 

studied based on invariant manifolds approach.  The 

rotating beam was modeled as a conservative system 

with cubic geometric nonlinearities. 

  Nonlinear model reduction in systems with 

excitations has also been considered in recent years.  

Sinha et al. [2005] studied nonlinear order reduction 

in parametrically excited systems, and presented 

three different methods: nonlinear projection via 

singular perturbations, post-processing approach and 

invariant manifold technique.  Touzè and Amabili 

[2006] studied dynamics of a water-filled cylindrical 

shell with external resonant forcing and the reduced 

model was obtained by normal form theory.  

  In this work we discuss model reduction by 

nonlinear normal modes for a structure with 

quadratic inertial nonlinearities under forced 

excitation, using the method of multiple time scales.  

For constructing nonlinear normal modes by the 

method of multi time scales, see Nayfeh and Nayfeh 

[1994] and Wang et al. [2005].  The structural model 

obtained by a Galerkin discretization in the form of a 

set of ordinary differential equations is considered 

the full system (Wang and Bajaj [2007]).  For the 

study of forced resonant response, models reduced 

through linear normal modes and the one obtained by 

reduction through nonlinear normal modes are 

compared to the full six degrees of freedom system.  

The nonlinearly reduced model is seen to over-

predict softening characteristics present in response.  
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  The present work is organized as follows.  We first 

review the discretized model for a three-beam-tip-

mass structure and discuss possible linear 

interactions.  Then, the following cases are 

considered: nonlinear model reduction for external 

excitation without internal resonance; and nonlinear 

model reduction for external excitation with 1:2 

internal resonance, including subharmonic and 

superharmonic external resonances.  Finally, we 

summarize the results.     

2  Equations of Motion and Linear Interactions 

  Consider the multi-beam structure shown in the Fig. 

1.  Each of the beams is modeled as an Euler-

Bernoulli beam with welded joints and the last beam 

carries a tip mass.  For this three-beam structure, 

Wang and Bajaj [2007] obtained the discretized 

equations of motion with essential inertial 

nonlinearities and system parameters.  The Galerkin 

discretization was based on the works of Crespo da 

Silva [1998] and Meirovitch [1997] and used quasi-

comparison functions.  The degrees of freedom of the 

discrete system were determined by the number of 

the convergence global linear structural modes.  

Using 30 quasi-comparison functions, the first six 

modes and frequencies achieved convergence.  This 

six degrees of freedom model (up to quadratic 

nonlinear terms) will serve as the full reference 

model for the present study, and it has the form: 

+∆+++ rrjDmjjjjjj QmQQQ &&&&&
),(

2 2 ωζω  

    +∆+ lrlrjDmlrj QQmm &&)( ),,(02),,(02  

    lrlrjDmlrj QQmm &&)( ),,(11),,(11 ∆+  

( )rrjsjDsmjss Qmmmx ),(0)()( +∆+= && ,                    (1a) 

where 6,,2,1 L=j and m∆ is the perturbation 

parameter of the mass ratio between the attached 

mass and the total mass of the three beams.  The 

matrices in Eqs. (1a), Dm , 02m , …, and 00sm are 

numerical matrices determined by the combination of 

the three parameters: the length ratio of the three 

beams, the position of the attached mass, and the 

ratio between the attached mass and the three beams. 

  Wang and Bajaj [2007] illustrated the variation of 

first two natural frequencies as a function of the 

length ratios of the beams and the magnitude of the 

attached mass.  More specifically, they obtained 

parameter combinations for 1:2 and 1:3 internal 

resonances between the first two modes.  If the 

length ratios of the three beams and the particle mass 

ratio are fixed, and the position of the attached mass 

is varied, other linear resonances can arise.  As an 

example, let the lengths be in ratios 5:3:2 and the 

mass ratio be 5:1.  Then we vary the position of the 

attached mass from the bottom of first beam to the tip 

end of the third beam.  The resulting variation of the 

lowest six calculated non-dimensional natural 

frequencies is shown in Figure 2.  These results were 

    
Fig. 1 The three-beam-tip mass structure with horizontal 

foundation excitation sx . 

                                          

obtained by the formulation developed in Wang and 

Bajaj [2007], and verified by the Finite Element 

Analysis by using the software ANSYS. 

  From Fig. 2, it is clear that there are many possible 

internal resonances.  Thus, a proper combination of 

the three parameters, the length ratios of the three 

beams, the location of the attached mass, and the 

mass ratio between the attached mass and the three 

beams, can lead to various internal resonances among 

 

 
 

Fig. 2 Variations of the lowest six natural frequencies as a 

function of the location of attached mass.  The length ratios 

of three beams are 5:3:2, the mass ratio between the 

attached mass and the three beams, )( cc mMm −  is 5:1. 

 

the lowest six modes.  We do not list here the 

possible combinations of these three parameters and 

the resulting internal resonances, though we note that 
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when using nonlinear normal modes for model 

reductions, we should take them into account.  

3 Nonlinear Model Reduction through Nonlinear   

Normal Modes 

 The six degrees of freedom model in Eqs. (1a) will 

be further reduced through nonlinear normal modes 

constructed by the method of multiple time scale.  

The base excitation term provides possible external 

or parametric excitation based on the frequency ratio 

between the base coordinate 
sx and the six 

generalized coordinates nQ ( 6,,2,1 L=n ). 

Nonlinear normal mode theory can be modified to 
include forcing and modal damping (Agnes and 

Inman [2001]).  The harmonic base excitation can 

also be introduced as another degree of freedom 

coupled to each of the six modes in Eqs. (1a): 

                    0
2 =+ sfs xx ω&& .                   (1b) 

This seven degree of freedom full model can be 
reduced to two, three or several degree of freedom 

system depending on the number of generalized 

coordinates involved with internal resonances.  Note 

that with the excitation also introduced as another 

degree of freedom, the system is autonomous.  

  To apply the method of multiple time scales, we 

introduce ε as a bookkeeping parameter and rescale 

the terms in equations as 

         jj QQ ˆε= , jj ζεζ ˆ= , jm ∆=∆ ˆε , 

)(ˆ 2

10 εε OqqQ jjj ++= , ( 6,,2,1 L=j ). 

For the base coordinate, when studying the case of 

external excitation, we scale it as 

       )( 4

1

3

0

2 εεε Oqqx ffs ++= ,                (2a)  

 

whereas for parametrical excitation, we scale the 

base motion as 

   )( 3

1

2

0 εεε Oqqx ffs ++= .                 (2b)  

For the nonlinear model reduction analysis here, we 

only discuss the resonant external excitation case, 

that is 

     εσωω += kf .                                               (3) 

Substituting Eqs. (2a) and (3) into Eq. (1), dropping 

the ‘^’ notation, and applying the method of multiple 

time scales, we obtain 

:)1(ε  

00
2

0
2
0 =+ jjj qqD ω ,                                        (4a) 

 00

2

0

2

0 =+ fkf qqD ω ,                                        (4b) 

:)2(ε  

000101

2

1

2

0 22 jjjjjjj qDqDDqqD ωζω −−=+  

    0

2

00),,(020

2

0),( lrlrjrrjDm qDqmqDm −∆−  

     ( ) ( ) +− 0000),,(11 lrlrj qDqDm ( ) )(0

2

0 jsf mqD ,    (5a) 

   00101

2

1

2

0 22 fkjfkf qqDDqqD σωω −−=+ ,         (5b) 

with ( 6,,2,1 L=j ).   

  In the following subsections we consider two cases: 

a system without internal resonance and a case with 

1:2 internal resonance between the first two modes. 

3.1 System without Internal Resonance 

  It can be shown that for the system with length 

ratios 5:3:2, mass ratio 4.0)( =− cc mMm , and the 

mass attached at the end of the third beam, there are 

no internal resonances.  The numerical values of 

matrices Dm , 02m , …, and 00sm  are set by the three 

parameters.  For lack of space, explicit numerical 

elements of these matrices won’t be given here.    

  To construct the nonlinear normal mode which 

tends to the th
k  mode as 0→ε , we let 
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                            (6a) 

,
2

0

0 cce
f

q
Ti

f
k += ω

                                          (6b) 

Substituting Eqs. (6) into Eqs. (5) and eliminating 
terms that will generate secular terms, we obtain 

kkkDmkk AmiAD ),(1
2

1
∆−= ω  

           fmiA kskkkk )(
4

1
ωζω −− .             (7) 

We also obtain from Eqs. (5a):  





≠

=+
=

.,hom_

,,hom_hom_

1

11

1
kjgnq

kjgnqgq
q

j

kk

j     (8) 

where 1 _ homkq , a function of 
kk AA ,  and 0Ti ke

ω
, 

is the homogenous part of the solution of (5a), 

1 _ homjq , a nonlinear function of 
kk AA ,  and 

higher order harmonics of  0Ti ke
ω

,  is the non-

homogenous part of solution of (5a).  In Nayfeh and 

Mook [1979], the homogenous part 1 _ homkq  was 

always set to zero in order to make the solution form 

look exactly same as that obtained by other 

perturbation methods.  Nayfeh [2005] introduced that 

the homogenous solution 1 _ homkq  must be 

determined by an orthogonalilty condition.  The 

explicit form of 1jq  is again not given. 

  Now, substituting Eqs. (6), (7) and (8) into Eqs. (5), 

we obtain the dynamics of the th
k  nonlinear normal 

mode.  Considering the large size of this equation, 

here we only give the th
k  nonlinear normal mode.  

We also set the damping ratio for each mode to be 

equal, that is ,ζζ =j  ( 6,,2,1 L=j ). 

   First consider the case when 1=k , that is, the 

excitation frequency is approximately equal to the 

first natural frequency.  Then the equation 
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representing dynamics of the 1st nonlinear normal 

mode is of the form 

( 101101110

2

110 08778.2 qqqq m∆−++ ωζωεω &&&  

))cos(44628.1 11 tf ωω+ =…                        (9) 

The corresponding first-order approximation of the 

invariant manifold, which represents the dynamics of 

1
st
 nonlinear normal mode, is obtained as 

 ( 112 14516.0)cos(78832.0 QtfQ m∆−−= ωε  

          ) ( )22

1

2

1 062965.095698.3 εOQQ ++− & ,      (10a) 

 

                            M  

( 1

4

1

4

6 41572.0)cos(63957.0 QetfeQ m∆−−= −− ωε  

) ( )22

1

42

1

4
14885.04006.4 εOQeQe ++− −− & .    (10b)  

  Substituting the invariant manifold defined by Eqs. 

(10) into the first of Eqs. (1a) and ignoring the 

remaining equations, we obtain a one degree of 

freedom reduced model through nonlinear normal 

modes.  For the one degree of freedom linear reduced 

model, one directly sets variables 2Q  to 6Q to zero in 

Eqs. (1a).  In Fig. 3 is shown a comparison between 

the system response with linear model reduction and 

with nonlinear model reduction.  Clearly, the linear 

reduced model represents stiffened nonlinearities, 

while the nonlinear reduced model for the same 

system has overcorrected and shows softening. 
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Fig. 3 Frequency response curves for resonant excitation of 

first mode with no internal resonance. Purple: LNM 

reduced 1dof system.  Blue: NNM reduced 1dof system. 

4.0=f , 02.0=ζ , 01.0=ε , 0=∆m . 

  Consider a second case with 2=k , that is, with 

excitation frequency approximately equal to the 

second natural frequency.  Then, the equation 

representing the dynamics of the 2nd nonlinear 

normal mode has the form 

( 202202220

2

220 29884.6 qqqq m∆−++ ωζωεω &&&  

    ))cos(16841.6 22 tf ωω+ =…                (11) 

 

  The corresponding first-order approximation of the 

invariant manifold, which represents the dynamics of 

2
nd

 nonlinear normal mode, is obtained as 

( 211 44376.0)cos(98798.0 QtfQ m∆+= ωε  

          ) ( )22

2

2

2 02258.016889.2 εOQQ +−− & ,      (12a) 

 

                            M  

( 2

5

1

4

6 40464.0)cos(95654.1 QetfeQ m∆+−= −− ωε  

) ( )22

2

42

2

3 38224.074721.4 εOQeQe +−− −− & ,    (12b) 

In Fig. 4 is shown a comparison between the 

responses obtained with linear model reduction and 

nonlinear model reduction.  One can again see that 

the linearly reduced model hardly shows any soften 

nonlinearities, while the nonlinearly reduced model 

provides extra softening characteristic.  
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Fig. 4 Frequency response curves for resonant excitation of 

second mode with no internal resonance.  Purple: LNM 

reduced 1dof system.  Blue: NNM reduced 1dof system. 

4.0=f , 06.0=ζ , 01.0=ε , 0=∆ m
. 

3.2 System with 1:2 Internal Resonance 

  For the system with length ratios equal to 5:3:2 and 

attached mass at the end of the third beam, if we 

choose a mass ratio 1539.0)( =− cc mMm , the 

system exhibits a 1:2 resonance between the first and 

the second linear modes.  Note that the corresponding 

numerical values of matrices Dm , 02m , …, and 00sm  

will be different from those for the non-internal 

resonant case considered above.    

  For 1:2 internal resonance forced response, the 

model reduction for both cases, 1:2 subharmonic 

internal resonance and 1:2 superharmonic internal 
resonace, are studied. 

3.2.1 The 1:2 Subharmonic Resonance 

  The subharmonic resonance case arises when the 

excitation frequency approximately equals the 2nd 

mode frequency or twice the 1
st
 mode frequency.  

The detuning parameter σ accounts for this nearness,  

       εσωω += 12f .                                          (13)   

  In Eqs. (1), we also introduced a mass perturbation 

parameter
m∆ , and this parameter accounts for the 

mistuning between 1
st
 and 2

nd
 modes.  Thus, we don’t 

need to introduce another new parameter to denote 

1:2 subharmonic resonance. 
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  To construct solutions that reduce to a combination 

of the first two modes as 0→ε , we let 
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  ,
2

012

0 cce
f

q
Ti

f += ω
                                  (14b) 

Substituting Eqs. (14) into Eqs. (5) and eliminating 

secular terms, we obtain the slow flow equations for 

the resonant modes: 

12)2,1(11)7,1(20)2,1(20111 2
2

1
AAmmmiAD 








+−−= ω           

             1)1,1(1
2

Am
i

Dm 







+∆− ζω ,                      (15a)            

( ) )2(1

2

1)1,2(11)1,2(20121
24

1
smi

f
AmmiAD ωω −+−=           

             ( ) 2)2,2(1 2 Ami Dm∆+− ζω .                     (15b)            

 
At the same time, from Eqs. (5a) we also obtain the 

solutions for 
jq1 .  Following the usual process, we 

then obtain the solutions for jq0  and jq1 , and finally 

the first-order approximation of invariant manifolds:  

( 1

1

13 16987.0)cos(85933.0 QetfQ m∆−= −ωε  

        11

2

11 10853.004263.014627.0 QQQQm
&& −+∆−   

        22

2

2

22

1 21062.011389.059589.0 QQQeQ && −++ −  

         )2

2

233033.0 Qe &−+ ,                                   (16a) 

 

                            M  

( 1

3

1

3

6 10726.0)cos(46029.0 QetfeQ m∆−= −− ωε  

        2

1

3

1

4
43916.035198.0 QeQe m

−− −∆− &   

2

2

42

1

2

11

3
22078.093327.030335.0 QeQeQQe

−−− +++ &&  

         )2

2

4

22

5 51315.09337.0 QeQQe && −− +− .        (16b)                                    

In Fig. 5 is presented a comparison between the 

responses for the two degrees-of-freedom model 

obtained by linear model reduction and by nonlinear 
model reduction.  The nonlinear reduced model 

through nonlinear normal modes approach also 

shows over softening while the linear model 
reduction shows stiffening more than the full model.  

3.2.2 The 1:2 Superharmonic Resonance 

  In this case the excitation frequency approximately 

equals the 1
st
 mode frequency, and thus  

       εσωω += 1f .                                          (17)  

 

Then, following the approach identical to that used in 

the subharmonic case, we get the modulation 

equations: 
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Fig. 5 Frequency response curves for subharmonic 

excitation with 1:2 internal resonance.  Purple: LNM 

reduced 1dof system.  Blue: NNM reduced 1dof system. 

1.0=f , 04.0=ζ , 01.0=ε , 0=∆ m . 
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+∆− ,    (18a)                                

( ) 2

1)1,2(11)1,2(20121
4

1
AmmiAD +−= ω           

             ( ) 2)1,1(1 2 Ami Dm∆+− ζω .                     (18b)            

The solution for jq0 and jq1 can then give us the 

first-order approximation of invariant manifolds for 

1:2 superharmonic resonance:  

( 1

1

1

1

3 16987.0)cos(20263.0 QetfeQ m∆−= −− ωε  

        11

2

11 10853.004263.014627.0 QQQQm
&& −+∆−   

        22

2

2

22

1 21062.011389.059589.0 QQQeQ && −++ −  

         )2

2

2
33033.0 Qe &−+ ,                                   (19a) 
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( 1

3

1

3

6 10726.0)cos(11493.0 QetfeQ m∆−= −− ωε  

        2

1

3

1

4
43916.035198.0 QeQe m

−− −∆− &   

2

2

42

1

2

11

3
22078.093327.030335.0 QeQeQQe

−−− +++ &&  

         )2

2

4

22

5
51315.09337.0 QeQQe && −− +− .        (19b) 

In Fig. 6 is shown a comparison between the 

responses obtained for the reduced models obtained 
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via the two distinct approximations.  Here again, the 

nonlinearly reduced model shows over softening and 
also a little bit smaller damping for the response. 

4 Summary and Conclusion 

  Using the nonlinear normal modes obtained through 

the method of multiple time scales, we reduce a base 

excited nonlinear system with inertial quadratic  
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Fig. 6 Frequency response curves for superharmonic 

excitation and 1:2 internal resonance.  Purple: LNM 

reduced 1dof system.  Blue: NNM reduced 1dof system. 

5.0=f , 05.0=ζ , 01.0=ε , 0=∆ m . 

nonlinearity to a one or two degree of freedom model 

depending on the existence of internal resonance.  

The frequency response for reduced models obtained 

using the nonlinear normal modes are compared with 

reduced models using linear modes as well as the full 
6 degree of freedom reference model.  The reduced 

models obtained through nonlinear normal modes 

show over softening of response, while the reduced 

models obtained through linear normal modes show 

stiffening of the response.  For the nonlinear reduced 

models, there are two possible explanations to this 

over softening: (i) The method of multiple time 

scales always pushes the linear damping term in the 

slave coordinates to higher-order approximations.  

Thus, in computing the invariant manifolds by first-

order approximation, these linear damping terms are 

neglected or under estimated.  (ii) Our system is with 
quadratic inertial nonlinearities unlike most other 

studies that focus on geometric nonlinearities. The 

reasons of this over soften nonlinearities for 

nonlinear reduced model will be studied in more 
detail in our future work. 
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