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Abstract
We study the motion planning problem for a under ac-

tuated vibratory mechanical system and for the non-
holonomic car-like a robot with a trailer, by means
of the differential flatness and the sub-Riemann nilpo-
tent approximation approaches, respectively. We show
two techniques for the solution of the motion planning
problem.
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1 Introduction
The motion planning problem has been extensively

studied and it’s a relevant problem both theoretically
and in applications in areas such as robotics and con-
structive controllability. In general, a robot is com-
pletely described by a non-linear system over a n-
dimensional manifold Xn

ẋ = f(x, u), x ∈ Xn, u ∈ Um m ≤ n (1)

with nonholonomic constraints given by a r-
distribution ∆ over the manifold Xn. Roughly
speaking, the motion planning problem consists in
finding a collision-free admissible path for the system,
for steering the robot from an initial position and
velocity, to a goal position and velocity. Moreover, we
can request for the trajectory to have an optimal cost.
In the control theory formalism, the motion planning
problem is formulated through a controllable control
system, together with an arbitrary non-admissible but
feasible (collision-free) trajectory, determined, for
instance, by computational geometric methods. The
motion planning reduces then to the design of control
strategies approximating the reference curve by means
of admissible curves within appropriate tubular neigh-
borhoods. We look the trajectories like (x(t), u(t)),
where x(t) is a feasible trajectory and u(t) is an

open-loop control generating x(t). The solution of the
motion planning problem allows the planification of
the robot’s trajectories to avoid obstacles.

We will consider two systems.
Firstly, we consider a vibratory system inspired in a

robotic mechanism, called the Elasto-Robot, consist-
ing of a prismatic pair coupled with a revolute and
containing an oscillating end-effector (Figure 1). Here
we follow the approach of non-linear control of closed
loop systems, and more specifically we use the so-
called flatness techniques which describe the control
systems whose trajectories can be parameterized by a
finite number of functions and their time-derivatives.
The concept of flat differential systems finds its

mathematical foundations in D. Hilbert’s 22th prob-
lem about the uniformization of analytic relations by
means of meromorphic functions [Hilbert, 1902] and
the equivalence method for differential systems of E.
Cartan [Cartan, 1914]. That is a technique in differen-
tial geometry for determining whether two geometrical
structures are the same up to a diffeomorphism. The
equivalence method is an essentially algorithmic pro-
cedure that has been successfully applied in differential
geometry and control theory. More recently flat dif-
ferential systems have been extensively studied within
the non-linear control literature, see for instance M.
Fliess et al. [Fliess, Lévine, Martin, Martin, Rouchon,
1992] and P. Rouchon treatment of control of oscilla-
tors [Rouchon, 2005].
Secondly, we consider the archetype system nonholo-

nomic car-like robot towing a trailer. We are interested
in the trajectories for a car with a trailer. More exactly,
we are interested in the optimal trajectories (the car’s
trajectories which minimize the energy and time), ad-
missible, joining two points given of the configuration
space. The configuration in the space R2×S×S of the
nonholonomic car is given by the position (x, y) ∈ R2

of the mid-point of the rear wheels, the angle θ between
the main direction of the car and the X-axis, and the
angle ϕ between the front wheels and the X-axis. The
controls u and v allow to the car displacements forward



and backward, and turning, respectively. There are two
constraint nonholonomics, displacements forward and
backward, and displacements without to slide. The
model is given by the following system:

ẋ = u(t) cos θ
ẏ = u(t) sin θ

θ̇ = u(t) tanϕ
ϕ̇ = v(t)

Although is possible to show that the system is differ-
entially flat following a coordinates change, we prefer
exploit the geometrical techniques to obtain the nilpo-
tent approximation, close to the chained form.

2 Differentially flat systems
In this section we present the main definitions con-

cerning flatness, we restrict ourselves to the basic state-
ments leaving aside formal demonstrations, we refer
the reader to the book [Sira-Ramı́rez and Agrawal,
2004].
A differential system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm m ≤ n

is said to be differentially flat if there is a vector y ∈
Rm such that

1. y, ẏ, ÿ, . . . are linearly independent: they are not
related by any differential equation.

2. y is a function of x and a finite number of deriva-
tives of u

3. There are two smooth maps Θ and Ψ such that

x = Θ(y, ẏ, . . . , y(α)), u = Ψ(y, ẏ, . . . , y(α+1)),

for certain multi-index α = (α1, . . . , αm) and

y(α) =

(
dα1y1
dtα1

, . . . ,
dαmym
dtαm

)

Roughly speaking, a control system is flat if we can find
functions (flat outputs) of the state and control variables
and their time-derivatives, so that the state and the con-
trol can be expressed in terms of that flat outputs and
their derivatives. By consequence, the trajectories for y
can be chosen freely.

3 Flatness and motion planning
Given the system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm m ≤ n (2)

and two configurations xI , xF in the space Rn,
the motion planning problem consists in finding an
admissible trajectory t 7→ (x(t), u(t)), t ∈ [tI , tF ]
for the system (2), connecting those configurations,
avoiding obstacles and with low cost.

For differentially flat systems it is possible to generate
admissible paths joining two given states since there is
a smooth 1-1 correspondence between solutions x(t) of
the system and the functions y(t). Also, it suffices to
control the flat outputs to control the whole system.
Once the terminal conditions over x(t) and u(t) are

given, through the surjectivity of the mappings Θ and
Ψ between sufficiently smooth trajectories of the out-
put and feasible trajectories of the system, we can find
a trajectory t 7→ y(t), sufficiently differentiable that
satisfies the corresponding conditions for the flat out-
put. To find a trajectory of the flat output satisfying the
conditions

y(tI) = yI , ẏ(tI) = 0, · · · y(r+1)(tI) = 0
y(tF ) = yF , ẏ(tF ) = 0, · · · y(r+1)(tF ) = 0

}
(3)

we construct (2r + 3) th degree interpolation polyno-
mials for the reference trajectories yi of each variable
of the flat output y:

η(t) = ηI+(ηI−ηF )
( t− tI
tF − tI

)r+2 r+1∑
j=0

aj

( t− tI
tF − tI

)j
(4)

where ηI = η(tI), ηF = η(tF ) and the coefficients aj
are independent of tI , tF , η(tI), η(tF ) and [Levine,
2009] satisfy r + 2 linear equations in r + 2 unknown
coefficients


1 1 · · · 1

r + 2 r + 3 2r + 3
...

...
...

(r + 2)! (r+3)!
2 · · · (2r+3)!

(r+2)!




a0
a1
...

ar+1

 =


1
0
...
0


(5)

We note that the above linear system always has a
unique solution because the matrix have all its columns
independent.

4 The Elasto-Robot
The Elasto-Robot is a mechanism consisting of a cir-

cular base body, which can perform freely two move-
ments: rotation and translation, and a prismatic pair
coupled with a revolute and containing an vibratory
element in the end-effector, moving on a horizontal
plane. The motion planning problem for this systems
is to move the robot between any given initial and fi-
nal configurations such that the vibrating can be con-
trolled, see Figure 1. The parameters involved in this



Figure 1. Robot with vibratory end-effector

model are the following: a is the disk radius of the cir-
cular base body; θ is the angular displacement of the
circular base body; r is the parallel displacement of the
end-effector arm; m2 is the prismatic-pair mass; m3 is
the terminal-effector mass and z is the coordinate asso-
ciated to the vibration. the base body have mass neg-
ligible, κ denotes the spring constant associated to the
vibration and the rotational inertia I . The torque forces
(u, v) = (τ1, τ2) are control parameters. We consider
the kinetic and potential energies for the revolute, pris-
matic pair and the terminal-effector, so the Lagrangian
L = L(θ, r, z, θ̇, ṙ, ż) of the system is

L = Iθ̇2 + (m2 +m3)ṙ2 + (m2 +m3)r2θ̇2

+m3ż
2 − r2κ− z2κ+ 2rzκ

}
(6)

By writing the Euler-Lagrange equations

d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ = τ1
d
dt

(
∂L
∂ṙ

)
− ∂L

∂r = τ2
d
dt

(
∂L
∂ż

)
− ∂L

∂z = 0,

 (7)

defining the state variables

x1 = θ, x4 = ẋ1,
x2 = r, x5 = ẋ2,
x3 = z, x6 = ẋ3,

for the coordinates x = (x1, x2, x3, x4, x5, x6) in the
manifold

M = (0, 2π)×(0, R)×(0, Q)×(0, 2π)×(0, R)×(0, Q)

for certain fixed values for R and Q, and by setting

I +m2x
2
2 +m3(x2 − x3)2 = J

with J > I , assuming J = 1, m2 = 1, a2 − x2 >
0, with a =

√
J − I , we obtain ([Monroy-Romero,

2011]) the following non-linear control system

ẋ = X0(x) +X1(x)u+X2(x)v, (8)

for the drift vector field

X0 =



x4
x5
x6
−2x2x4x5 − 2

√
m3x4(x5 − x6)

√
a2 − x22

x2x
2
4

κ√
m3

3

√
a2 − x22 + x3x

2
4



and X1 =


0
0
0
1
0
0

 , X2 =


0
0
0
0
1
1

 the control vector

fields.

5 Flatness of the model
We know [Monroy-Romero, 2012] that the Elasto-

robot is flat and the position (θ, r) = (x1, x2) of the
base body and the end-effector arm is a flat output:

y = (y1, y2) = (x1, x2). (9)

We get

x1 = y1

x2 = y2

x3 = y2 −
1

m3

√
a2 − y22

x4 = ẏ1

x5 = ẏ2

x6 =
ÿ1 − ÿ2 + 2y2ẏ1ẏ2 + y2y

2
1

2
√
m3ẏ1

√
a2 − y22

+ ẏ2

u = ÿ1 − 4y2ẏ1ẏ2

v = ÿ2 − y2ẏ21 (10)

The applied transformation

x = Θ(y, ẏ, ÿ)

u = φ(y, ẏ, ÿ) (11)
v = ψ(y, ẏ, ÿ)

is invertible, so y is a flat output of the Elasto-robot.
Now, we illustrate the solution of the the motion plan-

ning problem for the Elasto-Robot, in order to prevent



Figure 2. Motion of the point (x1, x2) for the Elasto-robot.

Figure 3. Reference trajectory for angle θ for the Elasto-robot.

Figure 4. Coordinate x4, angular velocity for the Elasto-robot.

Figure 5. Control input u for the Elasto-robot.

Figure 6. Control input v for the Elasto-robot

vibrations of the small mass. In this case we have the
constraints

y(tI) = yI , ẏ(tI) = 0, ÿ(tI) = 0
y(tF ) = yF , ẏ(tF ) = 0, ÿ(tF ) = 0

}
(12)

and the reference trajectory is

xi(t) = xIi − (xIi − xFi )(
t− tI
tF − tI

)4
3∑
j=0

aj(
t− tI
tF − tI

)j

(13)
for the variables xi, i = 1, 2 of the flat output y =
(x1, x2), where xIi = xi(tI), xFi = xi(tF ). The values
of the coefficients aj are a0 = 35, a1 = −84, a2 = 70
and a3 = −20. Then, by using the interpolation poly-
nomials (13) for each variable xi, i = 1, 2 of the flat
output y = (x1, x2), we obtain, as solution for the
motion planning problem for the Elasto-Robot, con-
necting the two rest-to-rest configurations xI1 = 0.5,
xF1 = π/2, xI2 = 0.5 and xF2 = 2, a straight line tra-
jectory for the point (x1, x2) (Figure 2). Figure 3 illus-
trates our reference trajectory solution x1(t). Figure 4
shows the angular velocity of the Elasto-robot. Figure
5 and Figure 6 show the control outputs.

6 Car-like robot towing a trailer
The model for the system is:

ẋ = u(t) cos θ
ẏ = u(t) sin θ

θ̇ = u(t) tanϕ
ϕ̇ = v(t)

Following the coordinates change

x1 = x

x2 = y

x3 = tan θ

x4 = tanϕ sec θ

u1 = cosϕ cos θ

v1 = 3u sec3 θ sinϕ tanϕ tan θ + v sec3 θ sec2 ϕ



Figure 7. Motion of the point (x, y) of the car.

we obtain the chained form for the system

ẋ1 = u1

ẋ2 = x3u1

ẋ3 = x4u1

ẋ4 = u1

and then, the flat outputs are (y1, y2) = (x1, x2).
However, rather than dealing with the flat system, we
will use the nilpotent approximation, based on [Berret,
2006]. If we consider ϕ as the angle measured between
the front wheels and the main direction of the car, then
the control system is

ẋ = Xu+ Y v

where the coordinates of x and vector fields are

x =


x
y
θ
ϕ

 , X =


cos θ
sin θ

0
− sinϕ

 , Y =


0
0
1
1

.

We compute the Lie’s brackets Z = [X,Y ] and
W = [X,Z]:

Z =


sin θ
− cos θ

0
cosϕ

 , W =


0
0
0
1

.

So, {X,Y, Z,W} is a basis of the tangent space at eve-
ry point (x, y, θ, ϕ) of the space R2 × S × S.
We compute the nilpotent approximation for the sys-

tem near from one reference parametrized trajectory

Γ =


0
0
0
t

 .

The nilpotent approximation along Γ is obtained by
means of normal coordinates by taking in the Taylor
expansions of X and Y , the terms of homogeneous de-
gree −1. We get

ẋ = X̂u+ Ŷ v

Figure 8. Coordinate x for the Car-like robot.

Figure 9. Coordinate y for the Car-like robot.

Figure 10. Control u for the Car-like robot.

Figure 11. Control v for the Car-like robot.

where x =


x
y
z
w

, X̂ =


1
0
y
2
y2

2

 Ŷ =


0
1
−x2
xy
2

.

That system is nilpotent of order 3. Returning
to the issue of the motion planning, to go from



the configuration (−0.4, 0.9, 0, 0) to the configuration
(−0.37, 0.9, 0, 0) in a minimal time, we use the Pon-
tryagin’s Maximum Principle for a fixed time. The
Hamiltonian of the system is

H =
p0
2

(y2v − xyv) + qu+ pv +
r

2
(yv − xu),

with (x, ψ) ∈ T ∗(R2×S×S), where ψ = (p, q, r, p0)
and p0 ≤ 0 is an adjoint variable of Hamiltonian H .
By using the two coordinate systems and the necessary
conditions for the optimality of H , we get

ẋ = u(t) = − cosϕ
ẏ = v(t) = − sinϕ

We obtain according to ([Love, 1927]) the solutions
for x(t), y(t), and therefore for controls u(t), v(t),
in terms of Jacobi elliptic function. So, the geodesic
curves are the famous Euler’s elastic curves. In Fig-
ure 7 we show the path followed by (x, y). Figure 8
and Figure 9 illustrate our reference trajectory solution
for x(t) and y(t). Figure 10 and Figure 11 show the
control outputs. We have obtained the solution for the
motion planning problem for the Car-like robot towing
a trailer, connecting the configuration (−0.4, 0.9, 0, 0)
to the configuration (−0.37, 0.9, 0, 0).

7 Conclusion
In this paper we have illustrated the solution of the

motion planning problem for two control systems, a vi-
bratory mechanical system and the nonholonomic car-
like a robot with a trailer, by means of differential
flatness and sub-Riemann nilpotent approximation ap-
proaches, respectively. Both control systems are flats,
however only in the first instance we have used that
property to obtain the trajectories and the correspond-
ing controls that solve the problem, computing the re-
ference trajectory solution by elementary interpolation,
without the integration of the model equations. Thus,
simple solutions have been obtained. In the second
case, we have used the sub-Riemannian nilpotent ap-
proximation to obtain the optimal trajectories that solve
the motion planning problem, due to intrinsic geo-
metric nature of the model. So, the differential flatness
may be useful or more relevant in some cases in the
solution of the motion planning problem.

8 Appendix
In this section we give some definitions and results

related to different approaches or frameworks to differ-
ential flatness .

8.1 Differential fields
It is a commutative ringR with a derivation d

dt : R →
R, a 7→ d

dt (a) =: ȧ

d
dt (a+ b) = ȧ+ ḃ
d
dt (ab) = ȧ b+ a ḃ

}
(14)

An element c ∈ R is a constant if ċ = 0.
L/Kfor two given fields K ⊂ L, in such a way that

the derivation of L in K coincides with the derivation
of K.
An element ξ ∈ L is differentially K-algebraic, if

there exists a p ∈ K[x1, . . . , xn] such that

p(ξ, ξ̇, . . . , ξ(n)) = 0 (15)

The extension L/K is said to be algebraic if all the
elements in L are K-algebraic.
ξ ∈ L is K-transcendent if and only if is not K-

algebraic. The extension L/K is said to be transcen-
dent if there exist at least an element L that is transcen-
dent.
A set {ξi}i∈I is differentially K- algebraic indepen-

dent if {ξ(ν)i | ν ∈ N}i∈I is K-algebraic independent.
Maximal independent sets with respect to the inclu-

sion. The cardinality of a basis is the transcendence
differential degree of the extension. Let K be a differ-
ential field then

K

[
d

ds

]
=

 ∑
finita

aν
dν

dsν

 (16)

is a principal ideals ring. It is commutative if and only
if K is a field of constants.

8.2 Field of differential operators
Let C = {f : [0,+∞) −→ C} be a ring of functions

with respect to sum and convolution

(f ? g)(t) =

∫ t

0

f(τ)g(t− τ)dτ (17)

C has no zero divisors (). The field of differential op-
erators is the quotient field of C.

1. Identity element: Dirac in t = 0
2. The inverse of the Heaviside function: is the

derivation operator

1(t) =

{
0 t < 0
1 t ≥ 0

(18)



8.3 Equivalence
Let M be a differential manifold and let F ∈
C∞(TM,Rn−m), an implicit system is written as fol-
lows

F (x, ẋ) = 0, rank
(
∂F

∂ẋ

)
= n−m (19)

Any system ẋ = f(x, u) can be taken into this form:
rank

(
∂f
∂u

)
= m implies u = µ(x, ẋn−m+1, . . . , xn),

for then

Fi(x, ẋ) = ẋi − fi(x, µ(x, ẋn−m+1, . . . , xn)) (20)

Two systems (M,F ), (N,G) with rank
(
∂F
∂ẋ

)
= n −

m and rank
(
∂G
∂ẏ

)
= p − q are equivalent in x0 ∈ M

and y0 ∈ N if:

1. There is Φ = (ϕ1, ϕ2, . . .) ∈ C∞(N,M) such
that

Φ(y0) = x0,
dϕi
dt

= ϕi+1 (21)

and any solution t 7→ y(t) of G(y, ẏ) = 0 satisfies
F (ϕ1(y(t)), ϕ2(y(t))) = 0

2. There is Ψ = (ψ1, ψ2, . . .) ∈ C∞(M,N) such
that

Ψ(x0) = y0,
dψi
dt

= ψi+1 (22)

and any solution t 7→ y(t) of F (x, ẋ) = 0 satisfies

G(ψ1(x(t)), ψ2(x(t))) = 0 (23)

If two systems are equivalent then they have the same
co-ranks m = q.
Given a trajectory t 7→ x(t) of system F (x, ẋ) =

0, x ∈M and ξ ∈ TM , the implicit system

(
∂F

∂x
(x, ẋ)

)
ξ(t) +

(
∂F

∂ẋ
(x, ẋ)

)
ξ̇(t) = 0 (24)

is called the linear approximation around x
If two systems are equivalent then the corresponding

linear approximations are also equivalent.
(M,F ) is flat in x0 if it is equivalent to (Rm, 0), that

is, if trajectories t 7→ x(t) are the image of a trivializa-
tion Φ, such that, Φ(y0) = x0. Equivalently, for each
curve t 7→ y(t)

x(t) = (x, ẋ, . . .) = Φ(ϕ1(y(t)), ϕ2(y(t)), . . .) (25)

If a system is flat then it is equivalent to its linear ap-
proximation.
If (M,F ) is flat in x0, then

1. Its linear approximation is controllable.
2. If x0 is an equilibrium point, the system is locally

controllable around x0.
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