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Abstract: A well-known Van der Pol oscillator is modified to be introduced into the
synthesis as an asymptotic harmonic generator of the periodic motion. The proposed
modification possesses a limit cycle, producing a single harmonic as opposed to multi-
harmonics of a standard harmonic oscillator. The parameters of the asymptotic harmonic
generator are shown to specify damping, amplitude, and frequency of the limit cycle
production. While being used as a reference model, the proposed Van der Pol modification
proves to be well-suited for a model orbit stabilization of a two-link pendulum robot
(Pendubot). The quasihomogeneous control synthesis is utilized to design a variable
structure controller that drives the actuated link of the Pendubot to a periodic reference
orbit in finite time. Performance issues of the controller constructed are illustrated in an
experimental study of the laboratory Pendubot. Copyright c© 2007, IFAC.
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1. INTRODUCTION

A modification of the Van der Pol oscillator is intro-
duced into the orbitally stabilizing synthesis of a dou-
ble pendulum (Pendubot) as a reference model. This
modification is made to shape the oscillator limit cycle
to a harmonic one. Moreover, the limit cycle produc-
tion of the modified Van der Pol oscillator possesses
a single harmonic (as opposed to multi-harmonics of
a standard harmonic oscillator) and the oscillator pa-
rameters specify amplitude, frequency, and damping
of oscillation. Amplitude, frequency, and damping can
thus be modified dynamically by simply changing the
oscillator parameters. Due to this, the proposed os-
cillator is superior to that producing a non-harmonic
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response in its limit cycle (e.g., as is in Example 3.13
from (Slotine and Li, 1991)).

Along this line, the proposed Van der Pol modification
serves as an asymptotic harmonic generator of the
to-be-enforced motion of the Pendubot. It is intro-
duced in a conceptually different way to the integral
form (Shiriaev et al., 2005) of the reference model
that possesses a center, whose neighborhood is filled
with cycles, and the target orbit is a priori to be
specified among the cycles. Another example of an
asymptotic harmonic generator (nearly the only one
available in the literature) is the variable structure Van
der Pol oscillator from (Sira, 1987). However, it is
hardly possible to use that oscillator for generating a
reference signal because the system response would
be contaminated by high frequency oscillations (a so-



called chattering effect) caused by fast switching the
structure of the Van der Pol oscillator.

The control law, enforcing the system to slide along
a periodic orbit of the phase space, and an asymp-
totic harmonic generator of this orbit, being coupled
together, yield a novel unified framework for orbital
stabilization of the Pendubot. The resulting closed-
loop system possesses its own limit cycle, producing a
prescribed harmonic whose frequency and amplitude
can be modified dynamically at our will. The proposed
synthesis is thus expected to yield desired robustness
properties against the discrepancy between the real
friction and that described in the model. Capabilities
of the proposed orbitally stabilizing synthesis are il-
lustrated in an experimental study of the laboratory
Pendubot.

The rest of the paper is organized as follows. Section
2 is focused on the modification of the Van der Pol
oscillator to be used in Section 3 as an asymptotic
harmonic generator in the quasihomogeneous orbital
stabilization of the Pendubot. Section 4 presents ex-
perimental results and Section 5 finalizes the paper
with some conclusions.

2. ASYMPTOTIC HARMONIC GENERATOR

The Van der Pol equation, whose general represen-
tation is given by the second order scalar nonlinear
differential equation

ẍ + ε[(x− x0)2 − ρ2]ẋ + µ2(x− x0) = 0 (1)

with positive parameters ε, ρ, µ, is a special case of the
Lienard equation (see, e.g., (Khalil, 2002))

v̈ + r(v)v̇ + g(v) = 0 (2)

where the functions r(v) and g(v) are continuously
differentiable.

The Van der Pol equation is a fundamental example
in nonlinear oscillation theory. It possesses a periodic
solution that attracts every other solutions except the
unique equilibrium point (x, ẋ) = (x0, 0). Such a
periodic solution is typically referred to as a stable
limit cycle (Khalil, 2002). The parameter ρ controls
the amplitude of this limit cycle, the parameter µ
controls its frequency, the parameter ε controls the
speed of the limit cycle transients, and the parameter
x0 is for the offset of x (see (Wang and Krstic, 2000)
for details).

For later use, we present a modification of the Van der
Pol equation

ẍ + ε[(x2 +
ẋ2

µ2
)− ρ2]ẋ + µ2x = 0, (3)

recently announced in (Orlov et al., 2004), where in
contrast to (1) no offset of x is admitted, i.e., the
parameter x0 = 0 is used, and the additional term
ε

µ2 ẋ3 is involved.

As opposed to the Van der Pol equation (1), the pro-
posed modification (3) has nothing to do with the
Lienard equation (2). Meanwhile, it still possesses a
stable limit cycle, being expressible in the explicit
form

x2 +
ẋ2

µ2
= ρ2 (4)

(unlike that of the Van der Pol oscillator, exhibiting
a nonsinusoidal periodic response in its limit cycle!).
The following result is in order.

Theorem 1. Consider the modified Van der Pol equa-
tion (3) with positive parameters ε, µ, ρ. Then this
equation has a stable limit cycle, given by (4), so
that every other solution except the equilibrium point
x = ẋ = 0 converges to the limit cycle (4) as t →∞.

Proof. Proof is rather standard (cf., for instance, Ex-
ample 3.13 from (Slotine and Li, 1991)) and it has
appeared in (Orlov et al., 2004).

Now it becomes clear that in equation (3) the pa-
rameter ρ stands for the amplitude of the limit cycle
whereas µ is for its frequency. Furthermore, by substi-
tuting the orbit equation (4) into (3) we conclude that
the limit cycle of the modified Van der Pol equation (3)
is remarkably generated by a standard linear harmonic
oscillator

ẍ + µ2x = 0, (5)

initialized on (4). Thus, we arrive at a nonlinear
asymptotic harmonic generator (3) which naturally
exhibits an ideal sinusoidal signal (5) in its limit cycle
(4). The amplitude and frequency of this sinusoidal
signal can be varied at will by tuning the parameters ρ
and µ of the harmonic generator (3).

The modified Van der Pol oscillator (3), the phase
portrait of which is shown in Fig.1 for the parameter
values ε = 1000, ρ = 0.01, µ = 1, still belongs to
a class of damped systems. In the region of negative
damping, occurring within the limit cycle where the
signals are small, the damping increases the energy
level of the response (see the proof of Theorem 1).
Conversely, outside the limit cycle, the damping be-
comes positive, thus decreasing the energy of the out-
put signal. As a result, the motion approaches the limit
cycle whose energy is determined by its amplitude ρ
and frequency µ and therefore a desired level of the
energy can be attained by assigning appropriate values
of the oscillator parameters ρ and µ.

3. ORBITAL STABILIZATION OF PENDUBOT

3.1 Problem Statement

The state equation of the Pendubot, depicted in Fig. 2,
is given by (Utkin et al., 1999, p. 55):
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Fig. 1. Phase portrait of the modified Van der Pol
equation
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where

m11 = θ1, m12 = θ3 cos(q1 − q2), m22 = θ2 (7)

N1 = θ3 sin(q1 − q2)q̇2
2 − gθ4 sin(q1),

N2 =−θ3 sin(q1 − q2)q̇2
1 − gθ5 sin(q2), (8)

θ1 = m1l
2
1 + m2L

2
1 + J1 + Jm, θ2 = m2l

2
2 + J2,

θ3 = m2L1l2, θ4 = m1l1 + m2L1,
θ5 = m2l2.

(9)

Here, m1 is the mass of link 1, m2 the mass of link 2,
L1 and L2 are respectively the lengths of link 1 and
link 2; l1 and l2 are the distances to the center of mass
of link 1 and link 2; J1 and J2 are the moments of
inertia of link 1 and link 2 about their centroids; Jm

is the motor inertia, τ1 is the control torque, w is the
external disturbance, and g is the gravity acceleration.

We assume throughout that the external disturbance
is of class L∞(0,∞) with an a priori known norm
bound K > 0, i.e.,

ess sup
t∈[0,∞)

‖w(t)‖ ≤ K (10)

where ‖ · ‖ stands for the standard Euclidean norm.

Our objective is to design a controller that causes
the actuated link of the Pendubot to track a reference
trajectory

lim
t→∞

[q1(t)− x(t)] = 0, (11)

while attenuating the effect of an admissible external
disturbance (10).

In order to present a control strategy that allows us to
achieve the above objective let us partially linearize
the Pendubot dynamics in accordance with (Spong
and Praly, 1997). For this purpose, let us rewrite
equation (6) in the form

m11q̈1 + m12q̈2 + N1 = τ1 + w1 (12)

m12q̈1 + m22q̈2 + N2 = w2. (13)
Then using (13), the following equation is derived:

q̈2 = −m−1
22 [m12

..
q1 +N2 − w2]. (14)

Now substituting equation (14) into (12) yields

(m11 −m12m
−1
22 m12)q̈1

−m12m
−1
22 (N2 − w2) + N1 = τ1 + w1. (15)

Finally, setting |M | = m11 −m12m
−1
22 m12 and

τ1 = |M |u−m12m
−1
22 N2 + N1 (16)

where u is the new control input, the desired lineariza-
tion is obtained:

q̈1 = u + |M |−1[w1 −m12m
−1
22 w2] (17)

q̈2 =−m−1
22 {m12[u + |M |−1(w1 −m12m

−1
22 w2)]

+N2 − w2}. (18)

In the above relations the positive definiteness of the
inertia matrix M(q) has been used to ensure that
|M | 6= 0. Since system (17), (18) describes the lin-
earized actuated joint model it is referred to as collo-
cated linearization (Spong, 1995).

The control strategy is now formalized as follows.
The control input (16) is composed by an inner loop
controller, partially linearizing the Pendubot, and an
outer loop controller u to be constructed. Given the
system output

y(t) = q1(t)− x(t), (19)

that combines the actuated state q1(t) of the system
and the reference variable x(t) governed by the modi-
fied Van der Pol equation (3), the outer loop controller
u is to drive the system output (19) to the surface
y = 0 in finite time and maintain it there in spite of
a uniformly bounded external disturbance w, affecting
the system.



3.2 Switched Control Synthesis

Due to (3), (17), (19), the output dynamics is given by

ÿ = u + |M |−1[w1 −m12m
−1
22 w2]

+ε[(x2 +
ẋ2

µ2
)− ρ2]ẋ + µ2x. (20)

The following control law

u =−ε[(x2 +
ẋ2

µ2
)− ρ2]ẋ− µ2x

−αsign(y)− βsign(ẏ)− hy − pẏ (21)

with the parameters such that

h, p ≥ 0, α− β > (|M |−1 + |m12m
−1
22 |)K (22)

is proposed.

The closed-loop system (20), (21) is then feedback
transformed to the one

ÿ = |M |−1[w1 −m12m
−1
22 w2]

−αsign(y)− βsign(ẏ)− hy − pẏ (23)

with piece-wise continuous right-hand side. Through-
out, solutions of such a system are defined in the sense
of Filippov (Filippov, 1988) as that of a certain differ-
ential inclusion with a multi-valued right-hand side.

Relating the quasihomogeneous synthesis from (Orlov,
2005b), the above controller has been composed of the
nonlinear compensator

uc = −ε[(x2 +
ẋ2

µ2
)− ρ2]ẋ− µ2x, (24)

the homogeneous switching part (the so-called twist-
ing controller from (Fridman and Levant, 2002))

uh = −αsign(y)− βsign(ẏ),

and the linear remainder

ul = −hy − pẏ

that vanishes in the origin y = ẏ = 0. By Theorem 4.2
from (Orlov, 2005a) the quasihomogeneous system
(23) with the parameter subordination (22) is finite
time stable regardless of which external uniformly
bounded disturbance subject to (10) affects the sys-
tem. The control objective is thus achieved.

In the remainder, capabilities of the proposed synthe-
sis procedure are tested in an experimental study of
the laboratory Pendubot.

4. EXPERIMENTAL RESULTS

4.1 Pendubot prototype

Performance issues of the quasihomogeneous synthe-
sis are tested on the laboratory Pendubot, manufac-
tured by Mechatronics Systems Inc. and installed in

the CICESE Research Center. The values of the Pen-
dubot parameters (9), supplied by the manufacturer
(Mechatronics, 1998), are listed in Table 1.

Table 1. Parameters of the Pendubot.

Notation Value Units
θ1 0.0308 kg m2

θ2 0.0106 kg m2

θ3 0.0095 kg m2

θ4 0.2087 kg m
θ5 0.0630 kg m

4.2 Experimental verification

In our experimental study of the orbitally stabilizing
synthesis (3), (16), (21), the controller gains were set
to α = 140, β = 40, h = 0, p = 0 whereas the ref-
erence parameters were tuned to ε = 8.7, ρ = 0.013,
µ = 10. The initial conditions of the Pendubot posi-
tion and those of the modified Van der Pol oscillator,
selected for all experiments, were q1(0) = 3.14 rad,
q2(0) = 3.14 rad, and x(0) = −3.14 rad, whereas all
the velocity initial conditions were set to zero.

In order to test the robustness of the controller con-
structed an external disturbance, similar to that of
(Zhang and Tarn, 2002), was randomly added by
lightly hitting the links of the Pendubot. For demon-
strating the capability of the controller to move the
Pendubot from one orbit to another by modifying the
orbit parameters we then introduced a random time
instant t0 (it was t0 ≈ 10s in the experiment), when
the amplitude ρ of the model limit cycle was changed
from its initial value ρ = 0.013 to the new one ρ =
0.5.

Experimental results for the resulting Pendubot mo-
tion, enforced by the orbitally stabilizing controller,
are depicted in Fig. 3. This figure demonstrates that
while being driven by the orbitally stabilizing con-
troller, the closed-loop system generates a bounded,
quasi-periodic motion and exhibits fast recovery of
this motion when the quick disturbance is successively
applied to each link of the Pendubot. As predicted
by theory, the desired orbital transfer is achieved by
simply changing the amplitude of the orbit limit cycle.
Thus, good performance of the orbitally stabilizing
controller is concluded from Fig. 3.

5. CONCLUSIONS

A well-known Van der Pol oscillator is modified to
possess a stable limit cycle, governed by a standard
linear oscillator equation. The proposed modification
is introduced into the orbitally stabilizing synthesis of
a double pendulum as an asymptotic harmonic gener-
ator of the periodic motion. The resulting closed-loop
system is capable of moving from one orbit to another
by simply changing the parameters of the modified
Van der Pol oscillator. The quasihomogeneity-based
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Fig. 3. Orbital stabilization of the Pendubot: left col-
umn for the orbital recovery under the randomly
added quick disturbance, right column for the
transfer from one orbit to another

control synthesis is utilized to design a variable struc-
ture controller that drives the actuated state of the
Pendubot to a model orbit in finite time. The resulting
closed-loop system is shown to track the model orbit
in a sliding mode of the second order, even in the pres-
ence of external disturbances with an a priori known
magnitude bound. Capabilities of the quasihomoge-
neous synthesis and its robustness against modelling
errors and external disturbances are illustrated in an
experimental study made for the laboratory Pendubot.

REFERENCES

The Pendubot user’s manual. Mechatronics Systems
Inc., Champaign, IL, 1998.

Bartolini G., Ferrara A. and Usai E. (1998). Chattering
avoidance by second-order sliding mode control.
IEEE Trans. Autom. Contr., 43, 241–246.

Fantoni I., Lozano R. and Spong M. (2000). Energy
Based Control of the Pendubot. IEEE Trans. Aut.
Contr., 45(4), 725–729.

Filippov A.F. (1988). Differential equations with dis-
continuous right-hand sides. Dordrecht: Kluwer
Academic Publisher.

Fridman L. and Levant A. (2002). Higher order slid-
ing modes,” in Sliding mode control in engineer-
ing, W. Perruquetti and J.-P. Barbout (eds.), New
York: Marcel Dekker, pp. 53–102, 2002.

Hill D. and Moylan P. (1976). The stability of nonlin-
ear dissipative systems. IEEE Trans. Auto. Ctrl.,
21, 708–711.

Khalil H. (2002). Nonlinear systems, third edition,
New Jersey: Prentice Hall.

Levant A. (1993). Sliding order and sliding accuracy
in sliding mode control. Int. J. Contr., 58, 1247–
1263.

Orlov Y. (2005a). Finite-time stability and robust
control synthesis of uncertain switched systems.
SIAM Journal on Control and Optimization, 43,
pp. 1253–1271.

Orlov Y. (2005b). Finite time stability and quasihomo-
geneous control synthesis of uncertain switched
systems with application to underactuated manip-
ulators. Proc. of the 44th Conference on Decision
and Control, Seville, Spain.

Orlov Y., Acho L. and Aguilar L. (2004). Quasi-
homogeneity approach to the pendubot stabi-
lization around periodic orbits. Proc. 2nd IFAC
Symposium on Systems, Structure and Control,
Preprints, Oaxaca-Mexico, 2004.

Shiriaev A., Perram J.W. and Canudas-de-Wit C.
(2005). Constructive tool for orbital stabilization
of underactuated nonlinear systems: virtual con-
straints approach. IEEE Trans. Autom. Contr., 50,
1164–1176.

Sira-Ramirez H. (1987). Harmonic response of
variable-structure-controlled Van der Pol oscilla-
tors. IEEE Trans. Circuits and Systems, 34, 103–
106.

Slotine J.-J. and Li W. (1991). Applied Nonlinear
Control. New Jersey: Prentice Hall.

Spong M.W. (1995). The Swing Up Contol Problem
for the Acrobot. IEEE Control Systems Maga-
zine, 49–55.

Spong M.W. and Praly L. (1997). Control of Underac-
tuated Mechanical Systems Using Switching and
Saturation. Lecture Notes in Control and Infor-
mation Sciences 222, Springer Verlag, London,
163–172.

Utkin V.I., Guldner J. and Shi J. (1999). Sliding modes
in Electromechanical Systems. London: Taylor
and Francis.

Wang H.-H. and Krstic M. (2000). Extremun Seeking
for Limit Cycle Minimization. IEEE Trans. Aut.
Contrl., 45(12), 2432–2437.

Zhang M. and Tarn T.J. (2002). Hybrid control of the
Pendubot. IEEE Trans. Mechatronics, 7, 79-86.


