
 
 
PHYSCON 2017, Florence, Italy, 17-19 July, 2017 

 

SOME ASPECTS OF A PARAMETRIC SIMPLE PENDULUM 
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Abstract 
  By constructing basins of attractions and by 
numerical continuation techniques, some unexpected 
aspects of parametric resonances in a single pendulum 
are described. Odd resonances not predictable by the 
Melnikov method for vertical excitation have been 
numerically investigated for degenerate period-3 
attractors. For excitations tilted up to 7/180, there are 
two different types of period-3 attractors, for 
just one type of period-3 attractor is 
observed.
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1 Introduction 
  The studies of parametric resonances started with the 
first observation done by Faraday[Faraday, 1831] of a 
resonance in surface waves of a fluid submitted to 
vertical excitation exhibiting twice the period of the 
excitation. 
  Parametric resonances are related to the temporal 
modulation of one or more of system physical 
parameters. For single or multiple arm pendulums one 
of the most striking effects is the stabilization of arms 
in the inverted position [Stephenson, 1908], 
[Sartorelli, Lacarbonara, 2012]; [Depetri, Sartorelli, 
Marin, Baptista, 2016] and references therein. [Koch, 
Leven, 1985] applied the Melnikov theorem for 
subharmonic bifurcations and obtained the parameter 
ranges for the existence of oscillations with period that 
is an even multiple of the perturbation, but they could 
not obtain the ranges for the odd oscillations. 
  [Depetri, Sartorelli, Marin, Baptista, 2016] also 
applied the Menilkov method and showed that for the 
tilted case the odd resonances are predictable. Here, 
we are presenting some aspects that cannot be 
predicted by such method. 

 
 
2 Equations of motion 
  The equation of the motion is given by Eq. 1, see 
also Fig. 1.  
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where f0 related to the fundamental frequency, g 
the gravity acceleration, b the viscous dissipation and 
s = (xp,yp) is the pivot pendulum position. The pivot, 
attached to slider car in a rail which makes an angle 
with the vertical direction, can be put to oscillate 
periodically with amplitude A and frequency f0 

exciting the pendulum dynamics. The absolute value 
of the pendulum angular speed can be measured 
with the help an optical rotary encoder while the pivot 
speed using an optical linear encoder. In this way we 
can obtain the amplitude A and the excitation 
frequency. To obtain basins of attraction we have 
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Figure 1. Diagram of a parametric pendulum under a generic 
tilted direction lCM is the center of mass position, L is the total 
length, m is the mass, b the viscous dissipation and f0 the 
fundamental frequency. 



 

integrated the autonomous dimensionless equations 
Eq. (2) using initial conditions described below and by 
measuring the attractor period. 
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3 Results and discussion  
  In Fig 2(A) we show basins of attraction for the 
vertically excited pendulum (=0), with fp=5Hz and 
A=2.02 cm.  

Figure 2. In (A), basins of attraction for the vertically excited 
pendulum (0). Each color corresponds to attractors of 
different periodicity, with period 0 indicating fixed points while 
negative periods denote rotations. In (B), phase portraits 
obtained with the initial conditions indicated by dots in (A). 
There are two kinds of period-3 attractors (odd and even), 
conjugated by inversion symmetry as depicted in (C) , where 
() are plotted for odd order attractors while  are 
plotted for even ones. 

Each colour corresponds to attractors of different 
periodicities. Initial conditions in the dark orange 
region are attracted to a fixed point. The six light 
orange regions, ordered in counterclockwise, 
constitute the basin for period-3 oscillations. It should 
be noticed the inversion symmetry of the six priod-3 
regions. The negative periods denote rotations with 
initial conditions distributed sparsely. In Fig 2(B), we 
depict phase portraits obtained by integrating 
autonomous dimensionless equations Eq. (2) from the 
initial conditions indicated by dots in 2(A). There are 
two classes of period-3 orbits conjugated by (, ) 
inversion as depicted in Fig. 2(C), where we plot (, 
) for odd attractors (initial conditions in regions 1, 3 
and 5) and (-, -) for even ones (initial conditions 2, 
4, 6). 

 
Figure 3. In (A) basins of attraction for tilted excitation 
(). Each color corresponds to attractors of different 
periodicity, while negative periods denote rotations. In (B), 
phase portraits obtained by integrating the model from the 
initial conditions indicated by dots in (A). In (C), phase portrait 
for the two kinds of attractor present in (B), where () are 
plotted for odd-order trajectories and  for even ones. 
 
  Taking randomly any initial conditions in the odd 
regions as well as in the even regions we obtain the 



 

same result. Therefore, each one of these attractors 
presents the same loci of saddle-node bifurcations 
obtained separately by numerical continuation of each 
one as shown in Fig. 4(A).  

Figure 4. In (A) is shown the common loci of saddle-node 
bifurcations obtained by numerical continuation technique of 
each degenerate attractor. In (B) the numerical continuation 
results for non-degenerate attractors. 
 
  We repeated the same procedure for a small angle 
breaking the pendulum symmetry, with 
initial conditions carefully chosen. In Fig. 3(A) 
apparently now the basin of attraction of period-3 has 
only three regions but the phase spaces in 3(B) 
illustrate that we have even and odd attractors as 
before, and also an apparent reflection symmetry in 
However, in this case taking randomly any initial 
conditions in the three regions we necessarily will not 
obtain the same result, that is, three even attractors 
and three odd ones but we always obtain one of the 
two types de attractor shown in Fig. 3(C). Therefore, 
each one of these attractors presents different loci of 
saddle-node bifurcations, as shown in Fig. 4(B), 

showing that period-3 attractors degenerescence were 
broken. 

 
4 Conclusions 
  As a first order model, the Melnikov method cannot 
predict odd resonances of simple planar pendulum 
with vertical excitation but they indeed exist such as 
period-3 and period-5 and we studied the first case. 
The basin of attraction of period-3 resonance presents 
six regions. The attractors obtained with initial 
conditions in alternate regions present inversion 
symmetry effects so they are degenerate and present 
the same loci of saddle-node bifurcations. Therefore, 
we named the attractors as in-phase and out-phase 
mode according to odd and even regions, respectively. 
  For tilted excitation, the last term in Eq. 1 is an 
additional torque that is responsible to replace the 
fixed point of the vertical case by period-1 oscillation. 
Another effect is to promote the fusion of the six 
regions into 3 regions, but in these regions there are 
small dense sub-regions around the black dots in Fig. 
3(A) which are related to attractors of different 
phases. In the same way we can name in-phase and 
out-phase these different attractors, relate to the 
breaking degeneracy. This feature is preserved up to 
. Above this value we will have basins of 
attraction similar to the ones for  but no sub-
regions and just one class of attractor of period-3 
remains. We are still working to get more detailed 
results. 
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