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Abstract
We consider a system of two Van der Pol-Duffing os-

cillators with Huygens (speeding up) coupling. This
system serves as appropriate model for Huygens syn-
chronization of two mechanical clocks hanging from
a common support. We examine the main regimes of
complete and phase synchronization, and study the de-
pendence of their onset on the initial conditions. In
particular, we reveal co-existence of two chaotic phase
synchronized modes and study the structure of their
complicated riddled basins.
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1 Introduction
Synchronization phenomena have been the subject of

discussion in various research areas since the 17th cen-
tury, when the synchronization of two pendulum clocks
attached to a common support beam was first discov-
ered by Cristian Huygens [Huygens, 1673]. Later,
the findings of Huygens were reproduced by means
of similar setups in both experimental and theoretical
works [Blekhman, 1998; Bennett et al., 2002; Pantale-
one, 2002].
In a recent paper [Oud, Nijmeijer and Pogromsky,

2006] synchronization experiments with a setup con-
sisting of driven pendula were performed. Particular
attention was paid to different synchronization regimes
that can be observed in this situation: anti-phase and in-
phase synchronization which are two typical synchro-
nization regimes observed in the experimental setup.
Historically, anti-phase synchrony was originally ob-
served by Huygens while in-phase synchronization in
a Huygens-type setup was observed and explained
in [Blekhman, 1998] by means of a model of coupled
van der Pol equations.
Here, we examine a model of Huygens original sys-

tem that consists of two oscillators driven by the Van

der Pol-Duffing control input, providing the escape
mechanism. Both oscillators are connected to a mov-
able platform via a spring. Due to this coupling the os-
cillators influence each other and can synchronize. This
paper investigates the onset of synchronous regimes in
the two-oscillator setup and their dependence on the
initial conditions and parameters of the coupled sys-
tem.

2 Problem statement

The mathematical mechanism behind the remark-
able Huygens’ observation of synchronized mechanical
clocks hanging from a common support was recently
described in [Pogromsky, Belykh and Nijmeijer, 2003].
The model used is the following. A beam of mass M
can move in the horizontal direction with viscous fric-
tion defined by damping coefficient d. One side of the
beam is attached to the wall via a spring with elasticity
k. The beam supports two identical pendula of length
l and mass m. The torque applied to each pendulum
is to sustain the clock active mode of pendula. It can
also be viewed as a control input, introducing the es-
cape mechanism to the system. The system equations
can be written in the form of Euler-Lagrange equations:

ml2φ̈1 + mgl sin φ1 + f1 = −mlÿ cos φ1

ml2φ̈2 + mgl sin φ2 + f2 = −mlÿ cos φ2

(M + 2m)ÿ + dẏ + ky =

−ml
2∑

i=1

(φ̈i cos φi − φ̇2
i sin φi),

(1)

where φi ∈ S1 is the angular displacement of the i-
th pendulum about its pivot point, y is the linear dis-
placement of the beam, and f1, f2 are the control inputs
defining the escape mechanism.

The Hamiltonian for each unperturbed pendulum



(fi ≡ 0, y ≡ 0) has the form:

H(φi, φ̇i) =
ml2φ̇2

i

2
+ mgl(1 − cos φi), (2)

Here, in contrast to [Pogromsky, Belykh and Nijmei-
jer, 2003], we use the only angle dependent control in-
put

fi = γφ̇i[H(φ, 0) − H∗], (3)

and get a simple model of the pendulum

ml2φ̈ + γφ̇[H(φ, 0) − H∗] + mgl sin φ = 0. (4)

Defined on the cylinder (φ, φ̇), system (4) has an un-
stable equilibrium point (φ = φ̇ = 0), enveloped by a
stable limit cycle which turns into a heteroclinic con-
tour of the saddle point (φ = π, φ̇ = 0) when parame-
ter H∗ > 0 increases [Belyustina and Belykh, 1973].
Since the clock angular displacement is fairly small
(there is no rotation), the parameter H∗ must be small,
and one can pass to the linear displacement of pendula
xi = lφi using shortened expansions in (1), (4).

cos φ = 1 − x2

2l2 + . . . , sinφ = x
l − x3

6l3 + . . . ,

H(φ, 0) = mg x2

2l + . . . , ÿ cos φ = ÿ + . . . ,

φ̈ cos φ = φ̈ + . . . , φ̇2 sin φ = 0.

(5)

Obviously, this expansion is valid for a large enough
values of l. Hence, the system (1) attains the form:

ẍ1 + λ(x2
1 − 1)ẋ1 + ω2x1 − αx3

1 = −ÿ
ẍ2 + λ(x2

2 − 1)ẋ2 + ω2x2 − αx3
2 = −ÿ

(M + 2m)ÿ + dẏ + ky = −m(ẍ1 + ẍ2),
(6)

where λ = γg
2l3 , ω =

√
g/l, α = g

6l3 .
The system (6) can be rewritten in the following form

ẍ1 + ω2x1 + F (x1, ẋ1) = −µÿ,
ẍ2 + ω2x2 + F (x2, ẋ2) = −µÿ,

ÿ + hẏ + Ω2y = m[ω2(x1 + x2) +
2∑

i=1

F (xi, ẋi)],

ẋ1 = u1, ẋ2 = u2, ẏ = z.

(7)

Here, F (xi, ẋi) = λ(x2
i − 1)ẋi − αx3

i , i = 1, 2, and
new notations for the coupling parameter µ = 1/M ,
frequency of the platform Ω =

√
k/M and damping

factor h = d/M were introduced. Note that new y
stands for µy. Thus, the Huygens problem is now trans-
formed to the synchronization problem of two van der
Pol-Duffing oscillators with the special coupling which
we call ”Huygens coupling”. Note that for α = 0

M
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Figure 1. Schematic drawing of the system, which consists
of two oscillators with masses m coupled via the platform
with mass M .

and λ � 1 such an approach was used in [Blekhman,
1998].
For the linear displacement xi the equations (7) model

the Nijmeijer setup described in [Oud, Nijmeijer and
Pogromsky, 2006] and depicted in Fig.1. The platform
of the mass M is attached to the wall via a spring with
linear stiffness k and a damper with viscous friction
coefficient d. Due to its possible horizontal displace-
ment the platform couples the dynamics of two oscilla-
tors with masses m. Both oscillators are connected to
the platform via a spring with linear stiffness km and
driven by force F (xi, ẋi) = λ(x2

i − 1)ẋi − αx3
i , i =

1, 2. In the setup shown in Fig.1 the frequency of each
m-mass oscillator is ω =

√
km/m. In Eq.(7) x1,2 and

y are the vibrations of oscillators and platform, respec-
tively; u1,2 and z are the velocities of motion of the
oscillators and platform, respectively.
The conservative system (6), with λ = d = 0 has the

integral

V =
2∑

i=1

m

(
ω2x2

i

2
− αx4

i

4
+

ẋ2
i

2
+ ẋiẏ

)
+

(M + 2m)
ẏ2

2
+ k

y2

2
= const

(8)

which serves as the Lyapunov-like function for the sys-
tem with the damped platform, λ = 0, d > 0:

V̇ = −dẏ2 ≤ 0.

The latter implies that conservative oscillators together
with the platform for d > 0 return to the stable equilib-
rium point at the origin, provided that initial perturba-
tions are bounded.
Our goal is to study synchronization phenomena when

the escape mechanism is switched on, i.e. λ > 0.
From the equations of the model it follows that the
system (6), as well as the system (7), has two in-
variant manifolds: the 4-d in-phase manifold Ms :=
{(x1, u1) = (x2, u2)} and the 2-d anti-phase manifold
Ma := {(x1, u1) = (−x2,−u2), y = z = 0}. The
system (7) possess two symmetries defining the exis-
tence of the two manifolds: the invariance under the
maps

(x1, x2) → (x2, x1)
(u1, u2) → (u2, u1)

(9)



and

(x1, x2, y) → (−x1,−x2,−y)
(u1, u2, z) → (−u1,−u2,−z) (10)

The map (9) defines the mirror symmetry with respect
to Ms, while the transformation (10) gives the central
symmetry with respect to Ma.
From existence of manifolds, and from symmetries

(9), (10) it follows that the system (7) may have a syn-
chronous attractor As lying in Ms, the an anti-phase
attractor Aa contained in Ma. Besides As and Aa,
there may exist either a symmetrical attractor Asym ly-
ing outside of (Ms ∪ Ma) or two asymmetrical attrac-
tors A+

asym, A−
asym being symmetrical to each other via

(9), (10). Obviously, the attractors may coexist in the
phase space of the system (7). Our main purpose is to
study these attractors and the structure of their basins.

3 Synchronization of oscillators driven by Van der
Pol control input

We start with the case where both oscillators are
driven by the force F (xi, ẋi) = λ(x2

i − 1)ẋi, i = 1, 2.
Thus, for µ = 0, the behavior of each oscillator is de-
fined by a solution of the differential equation, known
as the van der Pol equation. The parameter λ de-
fines the form of the limit cycle: for small λ the mo-
tion of oscillator is quasi-harmonic, for large λ the
relaxation oscillations are observed. We consider the
case, where the frequencies of the oscillators and plat-
form are equal. The similar situation was considered
in [Oud, Nijmeijer and Pogromsky, 2006], where the
experiments with the frequency of the platform which
is close to or above the frequency of the metronomes
have been performed. We assume that ω = Ω = 1. Ex-
perimentally, to prevent the situation when oscillations
of the platform become too large and the metronomes
will hit the frame of the setup, the authors of [Oud, Ni-
jmeijer and Pogromsky, 2006] used (increased) mag-
netic damping. In our theoretical study we assume that
h = 0.5.
For µ �= 0 the platform couples both oscillators. Since

the coupling parameter µ is inversely proportional to
the mass of the platform M , a decrease in M leads
to an increase in µ. In his original experiment, Huy-
gens used a massive beam to couple the clocks and
found that phase locking in anti-phase regime was ro-
bust [Huygens, 1673]. However, it was shown later,
that the synchronization of two metronomes resting on
a light wooden board [Pantaleone, 2002] generally ap-
peared in the form of an in-phase motion. Both the
situations can easily be modeled and confirmed in our
setting as limit cases for small and large µ, respec-
tively. In the present work, we examine the interme-
diate case and consider the two following values for
the coupling parameter: µ = 0.5 and µ = 1. Let us
first focus on the case where µ = 0.5. For various λ
the limit sets for the trajectory starting from the phase
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Figure 2. Projections of the phase portrait onto the planes
(x1, u1) - red curves, (x2, u2) - blue curves, and (y, z) - violet
curves for various values of parameter λ. For all the curves
initial conditions are the same (x0

1, x
0
2) = (0.4,−0.1). (a)

λ = 1; (b) λ = 2.64; (c) λ = 2.8; (d) λ = 3. Parameters
are: α = 0, Ω = ω = 1, µ = 0.5, h = 0.5, m = 0.47.

point (x0
1, x

0
2) = (0.4,−0.1) are shown in Fig.2 in pro-

jections onto the (displacement, velocity)-planes. The
initial values for other variables are assumed to be zero.
Obviously, that for identical oscillators in anti-phase

regime the total force would be the zero and due
to the damper, oscillations of the platform die out,
Fig2(a). When the dynamics of oscillators is on at-
tractors A+

asym or A−
asym, Fig2(b), (c) as well as for

the completely synchronous movement of both oscilla-
tors observed in in-phase regime, Fig2(d), oscillations
of the platform appear.
The basins of attractors corresponding to these oscilla-

tory regimes are shown in Fig.3 in projection onto the
(x1, x2)-plane. In order to obtain these diagrams, we
have changed initial displacements of both oscillators
within the range X := {(x0

1, x
0
2)|x0

1 ∈ [−3, 3], x0
2 ∈

[−3, 3]}. Initial values for other variables were as-
sumed to be equal to zero.
For small λ both oscillators only oscillate in either

anti-phase or in-phase modes, Fig.3(a), (b). In the fig-
ures the anti-phase synchronization (Aa ⊂ Ma :=
{(x1, u1) = (−x2,−u2), y = z = 0}) is established
for initial oscillators’ displacements falling into the yel-
low ranges. Basins of attraction corresponding to the
in-phase synchronization (As ⊂ Ms := {(x1, u1) =
(x2, u2)}) are shown in green. For λ � 2.63 for some
initial conditions the dynamics of oscillators can also
obey various regular symmetrical to each other attrac-
tors A+

asym or A−
asym. The basins of these attracting

sets are shown as red and blue domains in Fig.3(c), (d).
For large enough λ, attractor Aa belonging to the mani-
fold Ma and corresponding to oscillations in anti-phase
regime, loses its stability. In this case three stable pe-
riodic orbits co-exist in phase space of the system (7):



Figure 3. Basins of attraction in projections onto the (x1, x2)

plane for various values of parameter λ. The domains for
anti-phase synchronization ((x1, u1) = (−x2,−u2)) are
shown in yellow, whereas the green domains correspond to
in-phase synchronization ((x1, u1) = (x2, u2)). The basins
of attractors A+

asym and A−
asym are shown in red and blue,

respectively. The parameters of the system are: α = 0, Ω =

ω = 1, µ = 0.5, h = 0.5, m = 0.47.

A+
asym, A−

asym and As, belonging to the diagonal Ms.
For λ = 3 the basins of these attractors in projections
onto the (x1, x2) plane are shown in Fig.3(d). Note that
the structures shown in Fig.3 were obtained for zero
values of initial oscillators’ velocities. Otherwise, if
u0

1 �= u2
0, the symmetry observed in Fig.3 is broken.

When µ = 1 for small and large values of λ the struc-
tures of attractors similar to Fig.3(a), (d) are observed.
However, the transition from the double-state {As and
Aa} to the triple-state {As, A+

asym and A−
asym} regime

occurs differently. To illustrate this we consider a one-
parameter bifurcation diagram for increasing λ, ob-
tained for the fixed initial displacements of oscillators:
(x0

1, x
0
2) = (−0.7,−2.0), Fig.4. In this figure, x2 is

the value of displacement of the second oscillator be-
ing the point of intersection of the trajectory with the
hyperplane P : {x1 = 0.1}. As seen from Fig.4, the

Figure 4. Rearrangement of attracting sets on the one-
parametric bifurcation diagram for µ = 1. The initial dis-
placements of oscillators are (x0

1, x
0
2) = (−0.7,−2.0).
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Figure 5. Projections of phase portrait onto the (x1, x2) plane
for µ = 1 and (a) λ = 3, (b) λ = 3.2.

transition from double-state to triple-state behavior for
µ = 1 via chaotic regime occurs. Experimentally, the
existence of such type of oscillations was also observed
in [Oud, Nijmeijer and Pogromsky, 2006]. In Fig.5(a)
the projection of a chaotic attractor onto the (x1, x2)
plane for λ = 3 is presented. When λ = 3.2, as for
µ = 0.5, two regular, symmetrical to each other attrac-
tors A+

asym or A−
asym are observed, Fig.5(b).

In order to show existence of phase synchronization
for oscillators, we calculate the phases of their oscil-
lations. In our case, since the center of rotation can
clearly be distinguished at (xi, ui) = (0, 0), i = 1, 2,
Fig.2, the following definition of the phase can be used:

θ1,2 = arctan(u1,2/x1,2). (11)

For various values of parameters we check whether the
locking condition

∆θ = |θ1 − θ2| < const < 2π (12)

is satisfied. In Fig.6 the phase difference ∆θ for regular
(λ = 3.2) and chaotic (λ = 3) motions of oscillators
is given. For both the cases ∆θ is a bounded func-
tion. Accordingly, phase synchronization is observed
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Figure 6. Phase difference ∆θ for λ = 3 - solid line, and
λ = 3.2 - dotted line, µ = 1. Here, ∆θ < π.

for both regular and chaotic motions in the considered
setup.

4 Synchronization of oscillators driven by Van der
Pol-Duffing control input

In this section we assume that both oscillators are
driven by the force F (xi, ẋi) = λ(x2

i −1)ẋi−αx3
i , i =
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Figure 7. Basins of attraction in projections onto the (x1, x2) plane for various values of parameter α. The in-phase synchroniza-
tion ((x1, u1) = (x2, u2)) is established for initial displacements of oscillators falling into the green ranges. The ranges shown
in red and blue correspond to the case of phase synchronization when the dynamics of each oscillator is defined by various,
symmetrical to each other attractors A+

asym and A−
asym. The parameters of the system (7) are: λ = 2.5, Ω = 0.3, ω = 1, µ =

1, h = 0.01, m = 0.47.

1, 2, and focus on changes in the behavior of oscilla-
tors occurring with the increase of α. Depending on
the parameters, the structure of the phase space for in-
dividual oscillator (µ = 0) can be different [Belyustina
and Belykh, 1973]. For small values of α the unsta-
ble trivial equilibrium point x∗ = 0 is enveloped by a
stable limit cycle. The influence of two saddle points
x∗ = ±ω/

√
α in this case can be neglected. With the

increase of α both saddle points move to each other re-
sulting in formation of a heteroclinic contour of saddle
points for some value α = αh. While α reaches αh the
limit cycle ”grows into” this heteroclinic contour. For
α > αh the limit cycle disappears.
For the system (7) there are nine equilibrium points.

All of these states are of saddle type. The structure
of basins for attractors in system (7) under Van der
Pol-Duffing control input for various values of param-
eter α and fixed other parameters (λ = 2.5, Ω =
0.3, ω = 1, µ = 1, h = 0.01,m = 0.47) is shown
in Fig.7. Note that similar structures for parameters
considered in the previous section, with increasing α
can also be observed. For small α three various at-

tracting sets co-exist in the system: As ⊂ Ms, and
two symmetrical to each other attractors A+

asym and
A−

asym, Fig.7(a). The increase of α leads to disap-
pearance (at α = α∗ ≈ 0.15) of attractors A+

asym and
A−

asym, Fig.7(b). For α = α∗ the manifolds of nontriv-
ial equilibrium points divide the phase space of the sys-
tem into two parts: the part of completely synchronous
motion S : {(x1, x2)||x1| < ω/

√
α∗, |x2| < ω/

√
α∗}

(green range in Fig.7) and the part of unstable mo-
tion U : {(x1, x2)||x1| > ω/

√
α∗, |x2| > ω/

√
α∗}.

This regime is preserved for α ∈ (0.15; 0.18). For
α ≈ 0.187 the attractor As loses its asymptotic trans-
verse stability via a riddling bifurcation [Lai et al.,
1996]. After the riddling bifurcation, the system has
two new stable periodic solutions Ã+

asym and Ã−
asym,

Fig.7(c). For α = 0.205 the complex (riddled) struc-
ture of basin for chaotic attractors is shown in Fig.7(d).
The phase portrait of the system in projections onto
the (x1, u1) and (y, z) planes for α = 0.205 is shown
in Fig.8(a), (b). The following increase of α leads to
the appearance of a more complicated chaotic attractor,
Fig.8(c), (d).



Figure 8. Projections of phase portrait onto the (x1, u1) and
(y, z) planes for (a), (b) α = 0.205 and (c), (d) α = 0.21.

To illustrate rearrangement of attracting sets in the
system (7) we consider a one-parameter bifurcation di-
agram for increasing α, Fig.9. In this figure, as before,
x2 is the value of displacement for the second oscil-
lator being the point of intersection of the trajectory
with the hyperplane P : {x1 = 0}. The initial con-
ditions were taken close to the diagonal Ms, namely
(x0

1, x
0
2) = (0.0,−0.1). Therefore, for 0 < α < 0.187

the behavior of both oscillators are completely syn-
chronous: x1 and x2 intersect P at the same time.
For 0.187 < α < 0.202, depending on the initial

Figure 9. Transition to chaos in the one-parametric bifurca-
tion diagram with the increase of α. The initial displacements
of oscillators are (x0

1, x
0
2) = (0.0,−0.1).

conditions we observe two various values of displace-
ment for the second oscillator (it is omitted in Fig.9 for
brevity). In this interval of α two various but symmet-
rical to each other periodic motions Ã+

asym and Ã−
asym

co-exist. The chaotic oscillations arise at α ≈ 0.203
and preserve in a wide range of α. However, despite
this complexity of motion, both oscillators exhibit the
phase synchronous behavior.

5 Conclusions
In the present work we have considered the system of

two oscillators connected to a movable platform via a

spring. The platform couples the dynamics of both os-
cillators causing their synchronous movement. In order
to analyze possible regimes of their synchronous mo-
tion the numerical simulation has been performed for
two types of control input: Van der Pol and Van der
Pol-Duffing. It was shown that depending on the ini-
tial conditions and parameters of the system, three syn-
chronous regimes are possible: complete ((x1, u1) =
(x2, u2)), anti-phase ((x1, u1) = (−x2,−u2)) and
phase synchronization. For the latter regime the am-
plitudes of two oscillators remain quite different, while
the locking between the phases has been observed, i.e.
∆θ = |θ1 − θ2| < const < 2π. The existence of
this regime for both regular and irregular motions in
the setup has been revealed. Phase synchronization im-
plies that despite both the complexity of motion and
difference in oscillator displacements the clocks show
the same time.
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