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Abstract— We consider quadruples of matrices(E, A, B, C),
representing singular linear time invariant systems in the form
Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) with E, A ∈ Mn(C),
B ∈ Mn×m(C) and C ∈ Mp×n(C), under proportional and
derivative feedback, and proportional and derivative output
injection.

In this work study the equivalence relation as a Lie group
action that permit see the equivalence classes as differentiable
manifolds and studying the tangent space to the orbits we obtain
a characterization of the structural stability of quadruples of
matrices, in terms of numerical invariants.

I. I NTRODUCTION

We consider generalized time-invariant linear systems
given by the matrix equationsEẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) where E, A ∈ Mn(C), B ∈ Mn×m(C)
andC ∈ Mp×n(C) that we will represent by quadruples of
matrices(E,A, B, C). These equations arise in theoretical
areas as differential equations on manifolds as well as in
applied areas as systems theory and control, e.g. they are
used in modelling of mechanical multibody systems [5].

The aim of this paper is to characterize the structural sta-
bility of a quadruple of matrices, with regard the equivalence
relation defined by the following elementary transformations:
basis change in the state space, input space, output space,
proportional and derivative feedback, and proportional and
derivative output injection. Characterization is given in terms
of a certain numerical invariants presented in the paper.

Structurally stable elements are those whose behavior does
not change when applying small perturbations. The concept
of structural stability, in the qualitative theory of dynamical
systems has been widely studied by several authors in control
theory (see [2], [3], [4], [8], for example).

The equivalence relation considered may seen as induced
by a Lie group action, therefore the equivalent classes are
orbits with regard the action. So, in order to characterize
structural stability we can use geometrical techniques de-
scribing the tangent space to the orbits.

II. EQUIVALENCE RELATION

Let M be the set of matricesM = {(E,A, B, C) |
E,A ∈ Mn(C), B ∈ Mn×m(C)}, C ∈ Mp×n(C) repre-
senting singular time-invariant linear systems.

In order to consider quadruples in a simpler form pre-
serving qualitative properties as controllability-observability,
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controllability non observable, observability non control-
lable, finite and infinite zeros among others, we define the
following equivalence relation.

Definition 1: Two quadruples (E′, A′, B′, C ′) and
(E,A, B, C) in M are called equivalent if, and
only if, there exist matrices P,Q ∈ Gl(n; C),
R ∈ Gl(m;C), S ∈ Gl(p; C), FB

E , FB
A ∈ Mm×n(C)

andFC
E , FC

A ∈ Mn×p(C) such that

E′ = QEP + QBFB
E + FC

E CP,
A′ = QAP + QBFB

A + FC
A CP,

B′ = QBR,
C ′ = SCP,

or in a matrix form
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It is easy to check that this relation is an equivalence
relation.

Systems(E,A, B, C) ∈ M, for which there exist ma-
trices FB

E , FC
E , FB

A and FC
A such that the pencilλ(E +

BFB
E + FC

E C) + (A + BFB
A + FC

A C) is regular, are called
regularizable. Remember that regular systems are those such
that there exists a unique solution for some consistent initial
condition.

Obviously, regularizable character is invariant under equiv-
alence relation considered.

The equivalence relation permit us to reduce regularizable
systems to the following reduced form.

Proposition 1: Let (E, A,B,C) ∈M be an-dimensional
m-input regularizable singular system. Then, it can be re-

duced to(Ec, Ac, Bc, Cc) with Ec =
(

Ir

N1

)
, Ac =

(
A1

In−r

)
, Bc =

(
B1

0

)
, Cc =

(
C1 0

)
where

(A1, B1, C1) is in its Kronecker canonical form as a triple
representing a standard system (see [4]), andN1 is a nilpo-
tent matrix in its Jordan reduced form.



III. E QUIVALENCE RELATION AS A L IE GROUP ACTION

Let us consider the following Lie groupG = Gl(n; C)×
Gl(n;C)×Gl(m;C)×Gl(p;C)×Mm×n(C)×Mm×n(C)×
Mn×p(C)×Mn×p(C), acting onM. The product? in G is
given by

(Q1, P1, R1, S1, F
B
E 1, F

B
A 1, F

C
E 1, F

C
A 1)?

(Q2, P2, R2, S2, F
B
E 2, F

B
A 2, F

C
E 2, F

C
A 2) =

(Q2Q1, P1P2, R1R2, S2S1, F
B
E 1P2 + R1F

B
E 2, F

B
A 1P2+

R1F
B
A 2, Q2F

C
E 1 + F C

E 2S1, Q2F
C
A 1 + F C

A 2S1)

beinge = (In, In, Im, Ip, 0, 0, 0, 0) its unit element.
The action of the Lie groupG onM

α : G ×M −→M
where
α((P, Q, R, S, F B

E , F B
A , F C

E , F C
A ), (E, A, B, C)) =

(E1, A1, B1, C1)
with
E1 = QEP + QBF B

E + F C
E CP,

A1 = QAP + QBFA + F C
A CP,

B1 = QBR,
C1 = SCP.

give rise to the equivalence relations inM which defined in
§1.

From now on, we will make use of the following no-
tation: g = (P,Q, R, S, FB

E , FB
A , FC

E , FC
A ) ∈ G, and x =

(E, A,B, C) ∈M.
Given a quadruplex0 = (E0, A0, B0, C0) ∈M we define

the maps
αx0(g) = α(g, x0).

The equivalence class of the quadruplex0 with respect to
the G-action, called theG-orbit of x0, is the range of the
function αx0 and is denoted by

O(x0) = Imαx0 = {αx0(g) | g ∈ G}.
Remark 1:The mapsαx0 are clearly differentiable, and

O(x0), are smooth submanifolds ofM.
So, we have the following proposition.
Proposition 2:

Tx0O(x0) = Im dαx0 ⊂ Tx0M.

A. Description of Tangent Space to the Orbits

Let us denote byTeG the tangent space to the manifold
G at the unit elemente. It is known that

TeG =
Mn×n(C)×Mn×n(C)×Mm×m(C)×Mp×p(C)×
×Mm×n(C)×Mm×n(C)×Mn×p(C)×Mn×p(C)
Tx0M = M

Proposition 3: Let dαx0 : TeG −→M be the differential
of αx0 at the unit elemente. Then

dαx0((Q, P, R, S, F B
E , F B

A , F C
E , F C

A )) = (E1, A1, B1, C1)
with
E1 = EP + QE + BF B

E + F C
E C

A1 = AP + QA + BF B
A + F C

A C
B1 = BR + QB
C1 = SC + CP

Proof: Taking into account thatαx0 is differentiable it
suffices to compute the first order approximation of the map.

αx0(e + εg) =
(E, A,B,C) + ε(E1, A1, B1, C1) + O(ε2)

with

E1 = EP + QE + BFB
E + FC

E C,
A1 = AP + QA + BFB

A + FC
A C,

B1 = BR + QB,
C1 = SC + CP

Using Kronecker products and vector valued function (see
[6] for definitions and properties) the tangent space can be
described in the following form:

(
E1 A1 B1 C1

)t = MX

with M =


In ⊗ E Et ⊗ In 0 0 In ⊗ BCt ⊗ In 0 0
In ⊗ AAt ⊗ In 0 0 0 0 In ⊗ B Ct ⊗ In

0 Bt ⊗ InIm ⊗ B 0 0 0 0 0
In ⊗ C 0 0 Ct ⊗ Ip 0 0 0 0




andX =
(vec(P ) vec(Q) vec(R) vec(S) vec(F

B
E ) vec(F

C
E ) vec(F

B
A ) vec(F

C
A ))

t

In this notation we may say that the tangent space is
generated for the vector columns of the matrixM :




In ⊗ E Et ⊗ In 0 0 In ⊗ B Ct ⊗ In 0 0
In ⊗ AAt ⊗ In 0 0 0 0 In ⊗ B Ct ⊗ In

0 Bt ⊗ In Im ⊗ B 0 0 0 0 0
In ⊗ C 0 0 Ct ⊗ Ip 0 0 0 0




We can conclude that

dim TO(x0) = rankM

IV. STRUCTURAL STABILITY

In this Section we will recall the definition of structural
stability, according to that appearing in the paper by Willems
(see [8]), as well as equivalent conditions.

Let X be a topological space and consider an equivalence
relation defined on it.

Definition 2: An elementx ∈ X is structurally stableif
and only if there exists an open neighborhoodU ⊂ X of x
such that all the elements in it are equivalent tox.
Let us assume thatX is a differentiable manifold and the
equivalence relation inX is that induced by the action of a
Lie group G which acts onX, giving rise to orbits which
are also differentiable manifolds.

Let us denote byTxO(x) the tangent space inx ∈ X to
the orbit ofx, O(x).

Proposition 4: Under the assumptions above, the follow-
ing conditions are equivalent:

a) x ∈ X is structurally stable,
b) dimO(x) = dim X,
c) dim TxO(x) = dim X,

Proof: An elementx ∈ X is structurally stable if and
only if there exists an open neighborhood contained in its



orbit. Thus its orbit should be an open submanifold and
therefore its dimension equal todim X.

In our particular setup we have the following proposition.
Proposition 5: A quadruplex0 = (E, A,B, C) ∈ M is

structurally stable if and only if

rank M = 2n2 + nm + np

The homogeneity property of the orbits permit us to con-
sider an equivalent quadruple in a simpler form to compute
the rank of the matrixM .

So given a quadruple(E,A, B, C), there exist matri-
ces Q ∈ Gl(n; C), R ∈ Gl(m;C) such that B′ =

PBR =
(

Ir 0
0 0

)
and we can consider the equivalent

quadruple(E′, A′, B′, C ′) with E′ =
(

0 0
E1 E2

)
, A′ =

(
0 0

A1 A2

)
, B′ =

(
Ir 0
0 0

)
, C ′ =

(
C1 C2

)
.

In this form it is easy to observe that a necessary condition
for stability is that the quadruple being standardizable.

Finally we prove the main theorem characterizing the
structurally stable quadruples in terms of structural invari-
ants.

Theorem 1:A quadruple (E, A, B,C) ∈ M is struc-
turally stable depending on the order relation withn,m, p,

i) If min (m, p) ≥ n, if and only if, rankB = rankC = n.
ii) If p ≥ n > m, rankB = m, and rankC = n.
iii) If m ≥ n > p, rankB = n, and rankC = p.
iv) If n > m = p there are not structurally stable

quadruples
v) If n > m > p, if and only if, rankB = m,

rankC = p, rco
i = (n + p)(i + 1) and rc

i = in +

min(ip + n, (i + 1)m) where rco
0 = rank

(
E B
C 0

)
,

rco
i = rank




E B 0
C 0 0
A 0 E B

. . .
E B
C 0
A 0 E B

C 0




,

rc
1 = rank




A B 0
C 0 0
E 0 B


 and

rc
i = rank




A B
C 0
E 0 B A

. . .
A B
C 0
E 0 B




vi) If n > p > m if and only if, rankB = m,
rankC = p, rco

i = (n + m)(i + 1) and ro
i = in +

min(im + n, (i + 1)p) where rco
0 = rank

(
E B
C 0

)
,

rco
i = rank




E B
C 0
A 0 E B

. . .
E B
C 0
A 0 E B

C 0




,

ro
1 = rank




A B E
C 0 0
0 0 B


 and

ro
i = rank




A B E
C 0
0 0 B A E

. . .
A B E
C 0 0
0 0 C




Proof: Taking into account that a necessary condition
for stability is the standardization, if the quadruple is struc-
turally stable it can be reduced to(In, A1, B1, C1). So, after
to prove that these ranks are invariant under equivalence
relation, it suffices to observe thatrco

i − n(i + 1) are the
ρco numbersrc

i − ni are ρc numbers a,dro
i − ni are ρo

numbers of the triple(A1, B1, C1) in the canonical form of
the quadruple(E, A,B, C) it suffices to apply [4].

V. CONCLUSION

We have obtained a list of numerical invariants in terms
of certain ranks of matrices that it permit to deduce a char-
acterization of structural stability of quadruples of matrices.
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