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Abstract
A stability problem with respect to a part of variables

of the zero equilibrium position is considered for non-
linear non-stationary systems of ordinary differential
equations with the continuous right-hand side. As com-
pared to known assumptions, more general assump-
tions are made on the initial values of variables non-
controlled in the course of studying stability. Condi-
tions of stability and asymptotic stability of this type
are obtained within the method of Lyapunov functions
and generalize a number of existing results. The results
are applied to the stability problem with respect to a
part of variables of equilibrium positions of nonlinear
holonomic mechanical systems.
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1 Introduction
There exists a great number of works on the stabil-

ity problem with respect to a part of variables (rather
than with respect to all variables that determine the
system’s state) stated by V. V. Rumyantsev [1]. The
problem arises frequently and naturally in applications;
moreover, advances in detectability of dynamic sys-
tems make it efficient at the first stage of studying sta-
bility with respect to all variables. A survey on the
problem and rich bibliography can be found in [2-5].
The classical definition of stability with respect to a

part of variables of the zero equilibrium position of the
system of ordinary differential equations [1] assumes
the domain of initial perturbations to be a sufficiently
small neighborhood of the zero equilibrium position.
Along with this statement, the cases of arbitrary [2-5]
or large (belonging to an arbitrary compact set) [4, 5]
initial perturbations for a part of variables that are non-
controlled when studying stability are investigated.
However, in analysis of complex nonlinear systems, it

turns out to be interesting to study more general cases

when stability with respect to a part of variables of the
zero equilibrium position presumes that initial pertur-
bations, being small with respect to a part of variables
studied for stability, can be simultaneously large with
respect to one part and arbitrary with respect to the
other part (the rest) of non-controlled variables.

Indeed, assuming that initial perturbations of the
stated variables are large (as opposed to arbitrary), we
arrive at much softer requirements on the Lyapunov
functions. In this sense, the combined statement of
the problem can be an admissible tradeoff between the
meaning of stability and the respective requirements on
the Lyapunov functions.

We obtain stability and asymptotic stability conditions
of the stated type within the method of Lyapunov func-
tions, which generalize a number of existing results.
We apply the results to the stability problem with re-
spect to a part of variables of equilibrium positions of
holonomic mechanical systems.

2 STABILITY PROBLEMS WITH RESPECT
TO A PART OF VARIABLES

Suppose we have a nonlinear system of ordinary dif-
ferential equations

x′ = X(t, 0), X(t, 0) ≡ 0. (1)

We divide the variables in system (1) that belong to the
phase vector x that gives its state into two groups: (1) y-
variables used to study stability of the equilibrium po-
sition x=0, and (2) other (non-controlled) z-variables.
We also divide the variables included in the subvec-
tor z into two subgroups so that x = (yT, zT)T; z =
(zT1, zT2)T.

In a way common to partial stability (y-stability) the-
ory [2-8, 11, 12], we assume that the vector function X



is continuous in the domain

t ≥ 0, ‖y‖ ≤ h, ‖z‖ <∞,
‖x‖ = (‖y2‖+ ‖z2‖)1/2 = (x2

1 + . . .+ x2
n)1/2, (2)

n = dim(x),

and solutions of system (1) are unique and z-extendable
(i.e., any solution x(t) is defined for all t ≥ 0 such that
‖y(t)‖ ≤ h). We use x(t) = x(t; t0, x0) to denote
the solution of system (1) given by the initial condition
x0(t) = x(t0; t0, x0).
We use the designations Dδ is the domain of the initial

values x0 such that ‖y0‖ < δ, ‖z10‖ ≤ L, and ‖z20‖ <
∞; the domain D∆ is obtained by replacing δ by ∆;
and Ky and Kz1 are arbitrary compacts in the y- and
z1-spaces, respectively.
D e f i n i t i o n s. The zero equilibrium position x =

0 of system (1) for a large z10 and on the whole with
respect to z20 is

1. y-stable if for any ε > 0, t0 ≥ 0 and any given
number L > 0 one can find δ(ε, t0,L) > 0 such
that x0 ∈ Dδ yields ‖y(t; t0, x0)‖ < ε for all t ≥
t0;

2. uniformly y-stable with respect to t0 if δ = δ(ε,L);
3. asymptotically y-stable if it is y-stable in terms of

definition 1 and one can find ∆(t0,L) > 0 such
that the arbitrary solution x(t; t0, x0) of system (1)
with x0 ∈ D∆ satisfies the limit relation

lim ‖y(t; t0, x0)‖ = 0, t→∞. (3)

(for any numbers η > 0, t0 ≥ 0 and any
given number L > 0, one can find the number
T(t0,L, x0, η) > 0 such that ‖y(t; t0, x0)‖ < η for
all t ≥ t0 + T, x0 ∈ D∆);

4. equiasymptotically y-stable if one can find
∆(t0,L) > 0 such that relation (3) is met uni-
formly with respect to x0 from the domain t0 ≥
0, x0 ∈ D∆ (for any numbers η > 0, t0 ≥ 0 and
any given number L > 0 one can find the number
T(t0,L, η) > 0 such that ‖y(t; t0, x0)‖ < η for all
t ≥ t0 + T, x0 ∈ D∆);

5. uniformly asymptotically y-stable if it is y-stable
uniformly with respect to t0 in terms of definition
(2) and one can find ∆(L) > 0 such that relation
(3) is met uniformly with respect to t0, x0 from the
domain t0 ≥ 0, x0 ∈ D∆ (for any numbers η >
0, t0 ≥ 0 and any given number L > 0 one can find
the number T(L, η) > 0 such that ‖y(t; t0, x0)‖ <
η for all t ≥ t0 + T, x0 ∈ D∆);

6. uniformly globally asymptotically y-stable if it is
y-stable uniformly with respect to t0 in terms of
definition (2) and an arbitrary solution x(t; t0, x0)
of system (1) is given for all t ≥ 0, is uniform with
respect to t0, x0 from the domain t0 ≥ 0, y0 ∈
Ky, z10 ∈ Kz1, ‖z20‖ < ∞ is y-bounded and

satisfies limit relation (3) (for any numbers η >
0, t0 ≥ 0 and any given numbers Ly > 0,Lz1 > 0
one can find the numbers L1(Ly,Lz1) > 0 and
T(Ly,Lz1, η) > 0 such that ‖y(t; t0, x0)‖ ≤ L1 for
all t ≥ t0 and ‖y(t; t0, x0)‖ < η for all t ≥ t0 + T
if ‖y0‖ < Ly, ‖z10‖ ≤ Lz1, ‖z20‖ <∞).

R e m a r k 1. The earlier statements of y-stability
problems of the equilibrium position x = 0 of sys-
tem (1) involved three cases (1) ‖x0‖ < δ (A.M. Lya-
punov – V.V. Rumyantsev y-stability [1]), (2) ‖y0‖ <
δ, ‖z0‖ ≤ L (y-stability for a large z0 [4, 5]), and (3)
‖y0‖ < δ, ‖z0‖ <∞ (y-stability on the whole with re-
spect to z0 [2-5]). The definitions we propose here are
more general and involve the case x0 ∈ Dδ that was
not considered previously.
R e m a r k 2. The concept of y-stability of the equi-

librium position x = 0 of system (1.1) introduced in
[4, 5] for large z0 can be also treated as [13] y-stability
non-uniform with respect to z0 so that δ = δ(ε, t0, z0):
for any ε > 0, t0 ≥ 0 and z0 one can find δ(ε, t0, z0) >
0 such that ‖y0‖ < δ yields ‖y(t; t0, x0)‖ < ε for all
t ≥ t0. Note that [13] does not assume system (1) to
have the zero equilibrium position x = 0 and in fact
deals with non-uniform with respect to z0 stability of
the ”partial” equilibrium position y = 0. Stability of
the same type called stability for large z0 of the ”par-
tial” equilibrium position y = 0 is considered in [14]
independently of and simultaneously with [13]. (Sta-
bility conditions of the stated types obtained in [4,5,
13,14] within the method of Lyapunov functions coin-
cide.)
R e m a r k 3. If the equilibrium position x = 0 of

system (1) is equiasymptotically y-stable for large z10

and on the whole with respect to z20, it is y-stable for
a large z10 and on the whole with respect to z20. In-
deed, for any numbers ε > 0, t0 ≥ 0 and any given
number L > 0 one can find the numbers δ1(t0,L) >
0, T(t0,L, ε) > 0 such that ‖y(t; t0, x0)‖ < ε for all
t ≥ t0 + T, x0 ∈ Dδ . Since y(t; t0, x0) is continu-
ous on the set y0 = 0 (since solutions of system (1)
continuously depend on the initial conditions), for any
numbers ε > 0, t0 ≥ 0, any given number L > 0
and any given number T(t0,L, ε) > 0 one can choose
δ2(t0,L) > 0 such that for ‖y0‖ < δ2 the inequal-
ity ‖y(t; t0, x0)‖ < ε holds for t ∈ [t0, t0 + T] as well.
Choosing δ=min(δ1, δ2), we can conclude that the in-
equality ‖y(t; t0, x0)‖<ε holds for all t≥ t0, ‖x0‖∈Dδ .
R e m a r k 4. The earlier statements of problems of

global uniform asymptotic y-stability of the equilib-
rium position x = 0 of system (1) studied the cases
[2,3,6] when y-attraction of solutions is uniform from
the domain t0 ≥ 0, x0 ∈ Kx or the domain t0 ≥ 0, y0 ∈
Ky, ‖z0‖ < ∞. The domain t0 ≥ 0, y0 ∈ Ky, z10 ∈
Kz1, ‖z20‖ < ∞ of the uniform y-attraction of solu-
tions was considered in [2], where the decomposition
of the vector z0 into the subvectors z10 and z20 was not
supposed to be initially set and depended on the proper-
ties of the appropriate Lyapunov function in the course



of solving the problem.
R e m a r k 5. The example from [15] shows that the

requirement for global uniform y-boundedness of solu-
tions in definition (6) does not generally follow from
other two requirements of this definition, viz. the re-
quirement for uniform y-stability combined with the re-
quirement for uniform global y-attraction of solutions.

2.1 Generalization of Lyapunov–Rumyantsev
Theorems

To obtain stability conditions of the stated type, we
consider auxiliary functions: (1) the scalar function
V(t, x),V(t, 0) ≡ 0, which is continuously differen-
tiable in domain (1), and its derivative V′ by system
(1); (2) the scalar function V∗(t, y, z1),V∗(t, 0, 0) ≡ 0
and the vector function W(t, x),W(t, 0) ≡ 0, which
is continuous in domain (2); and (3) a(r), b(r), c(r),
which are continuously monotonically increasing for
r ∈ [0, h] or r ∈ [0,∞), respectively, in the prob-
lem of global asymptotic y-stability such that a(0) =
b(0) = c(0) = 0 (the Hahn functions for r ∈ [0, h] or
for r ∈ [0,∞) [2].
T h e o r e m 1. Suppose we can find the V-function

for system (1) in domain (2) such that

V(t, x) ≥ a(‖y‖), V′(t, x) ≤ 0. (4)

Then, for a large z10 and on the whole with respect to
z20, the equilibrium position x = 0 is

1. y-stable if, in addition,

V(t, x) ≤ V∗(t, y, z1), V∗(t, 0, z1) ≡ 0; (5)

2. y-stable uniformly with respect to t0 if

V(t, x) ≤ V∗(y, z1), V∗(0, z1) ≡ 0; (6)

T h e o r e m 2. Suppose we can find V-function and
the vector W(t, x) – function for system (1) in domain
(2) such that

a(‖y‖) ≤ V(t,x) ≤ b(‖u‖), V′(t, x) ≤ −c(‖u‖),
u = [yT,W(t, x)T]T.

(7)

Then, for a large z10 and on the whole with respect to
z20, the equilibrium position x = 0 is

1. asymptotically y-stable if conditions (5) are met;
2. uniformly asymptotically y-stable if conditions (6)

are met;
3. uniformly globally asymptotically y-stable if con-

ditions (6), (7) are met in the domain t ≥ 0, ‖x‖ <
∞ and, in addition,

a(r)→∞, r→∞. (8)

We prove Theorems 1 and 2 in the Appendix.

Theorems 1 and 2 generalize A. M. Lyapunov–V. V.
Rumyantsev theorems [1, 2] and their complimentary
results obtained in [4, 5].

2.2 Addition to the Lagrange–Dirichlet Theorem
Motion of the holonomic mechanical system with n

degrees of freedom is described by Lagrange equations
of the second kind [16]

d
dt

(
∂T
∂q′i

)
− ∂T
∂qi

= − ∂P
∂qi

, i = 1, n, (9)

T is the kinetic energy, P is the potential energy, and qi
are generalized coordinates. We use q = (q1, . . . , qn)
to denote the vector of generalized coordinates and as-
sume that the bounds imposed on the system do not
explicitly depend on t and system (9) allows the zero
equilibrium position q = q′ = 0.
We divide the components of the vector q into two

groups so that q = (qTy ,qTz )T. We consider stability
problem of the zero equilibrium position of (9) with
respect to (qy,q′) (with respect to a part of the gen-
eralized coordinates and to all generalized velocities).
We divide the generalized coordinates included in the
subvector qz into two subgroups qz = (qTz1,qTz2)T as
well.
The zero equilibrium position of system (9) is uni-

formly (qy,q′)-stable for a large qz10 and on the whole
with respect to qz20 if for any ε > 0, t0 ≥ 0 and
any given number L > 0 one can find δ(ε,L) > 0
such that for arbitrary solution of system (9) with
‖qy0‖ < δ, ‖q′0‖ < δ, ‖qz10‖ ≤ L, ‖qz20‖ < ∞ for
all t ≥ t0 the inequalities ‖qy(t; t0,q0,q′0)‖ < ε and
q′(t; t0,q0,q′0)‖ < ε hold.
Suppose T does not explicitly depend on t and the con-

ditions hold in the domain ‖qy‖ ≤ h, ‖q′‖ ≤ h, ‖qz‖ <
∞

1. T is positive definite with respect to all generalized
velocities;

2. P is positive definite with respect to a part of gen-
eralized coordinates (with respect to qy);

3. the inequalities hold

P (q) ≤ P ∗(qy,qz1), P ∗(0,qz1) ≡ 0,

T(q,q′) ≤ T∗(qy,qz1,q
′).

(10)

In this case, the energy integral H = T + P = const
holds for system (9). We take this integral as the V-
Lyapunov function. In addition to classical results [1,
16, 17] and by Theorem 1, we can conclude that if con-
ditions (1) and (2) are met, the zero equilibrium po-
sition of system (9) is uniformly (qy,q′)-stable for a
large qz10 and on the whole with respect to qz20.
For instance, conditions (10) are met for the class of

mechanical systems, for which P and T are indepen-
dent of qz2 and P is a positive definite quadratic form



P = P(qy,qz1) = qTy A(qz1)qy of the variables qy, with
its coefficients depending on qz1.
We can also consider the problem of uniform stability

with respect to a part of generalized coordinates and a
part of generalized velocities, with generalized veloc-
ities not necessarily corresponding to the chosen part
of generalized coordinates. Along with the decomposi-
tion q = (qTy ,qTz )T, qz = (qTz1,qTz2)T, we introduce the
decomposition q′ = (q′Tu ,q′Tw )T and consider the stabil-
ity problem of the zero equilibrium position of system
(9) with respect to (qy,q′u) for a large qz10 and on the
whole with respect to qz20. The stated property of par-
tial stability takes place if for any ε > 0, t0 ≥ 0 and
any given number L > 0 one can find δ(ε,L) > 0
such that for any arbitrary solution of system (9) with
‖qy0‖ < δ, ‖q′0‖ < δ, ‖qz10‖ ≤ L, ‖qz20‖ ≤ ∞
for all t ≥ t0 inequalities ‖qy(t; t0,q0,q′0)‖ < ε and
‖(q′u; t0,q0,q′0)‖ < ε hold.
We assume that T does not explicitly depend on t and

the conditions are met in the domain ‖qy‖ ≤ h, ‖q′u‖ ≤
h, ‖qz‖ <∞, ‖q′w‖ <∞

1. T is positive definite with respect to a part of gen-
eralized velocities (with respect to q′u);

2. P is positive definite with respect to a part of gen-
eralized coordinates (with respect to qy);

3. inequalities (10) hold.

Unlike the case when T is positive definite with re-
spect to all generalized velocities, in this case Lagrange
equations cannot be resolved with respect to the vector
q′′ of generalized accelerations and cannot be thus re-
duced to normal form (1). Nevertheless, if we consider
the energy integral, we can show, in addition to the re-
sult [1] (see also [18]), that if the listed conditions are
met, the zero equilibrium position of system (9) is uni-
formly (qy,q′u)-stable for a large qz10 and on the whole
with respect to qz20.
E x a m p l e 1. We consider the unit mass mov-

ing in the constant gravitational field along the sur-
face x1 = f(x2, x3), where f is a smooth function of
x2, x3 in the three-dimensional space Ox1x2x3 with the
axis Ox1 directed vertically up. In this case, we have
P = gf(x2, x3), g = const > 0.
Suppose the condition f(0, x3)=0 is met; for instance,

in [5], the surface has the form x1 = 1
2 x2

2(1 + x2
3).

By the addition we made to the Lagrange–Dirichlet
theorem, the equilibrium position of the point is stable
with respect to a part of coordinates (with respect to
x1, x2) and with respect to all velocities x′1, x

′
2, x
′
3, for

a large x30.
E x a m p l e 2. We consider the system of differential

equations

Ax′1 = (B − C)x2x3 + u1,

Bx′2 = (C −A)x1x3 + u2,

Cx′3 = (A−B)x1x2,

(11)

that describe the rotation of the rigid body subjected to

the action of two control moments u1 and u2. In this
system, A, B, C are the principal central moments of
inertia of the body, x1, x2, and x3 are the projections
of the vector of instantaneous angular velocity of the
body onto its principal central axes of inertia i1, i2, i3.
The control moments

uj = αjxj , αj = const < 0, j = 1, 2 (12)

are known [4, 5] to ensure asymptotic damping of rota-
tions with respect to variables x1 and x2. If C < A,B,
this means that the body is twisting with respect to the
bigger axis i3.
We use the Lyapunov function

V = 1/2A(A− C)x2
1 +B(B − C)x2

2,

whose derivative V ′, due to closed system (11), (12),
has the form

V ′ = (A− C)α1x
2
1 + (B − C)α2x

2
2,

to refine the nature of the transfer process in system
(11), (12).
Denoting y = (x1, x2), z1 = x3, by assumption (3)

of Theorem 2, we can conclude that if C < A,B, the
equilibrium position x1 = x2 = x3 = 0 of system (11),
(12) is uniformly globally asymptotically y-stable on
the whole with respect to z10 in terms of definition 6.
This means that twisting is ensured for all motions x(t;
t0, x0) of the body uniformly with respect to t0, x0 from
the domain t0≥ 0, y0∈ Ky for the arbitrary value z10.
E x a m p l e 3. We complement the results [2, 19] on

stability of the equilibrium position of the rigid body of
the mass m with the symmetry axis and the point fixed
on this axis. The body is subjected to the force with the
potential U(ψ), U(0) ≡ 0, and ∂U/∂ψ = 0 for ψ = 0.
In this case, we have the energy integral for the ”re-

duced” (with respect to ψ, θ) system

H∗ = 1/2[A(θ′2 + ψ′2sinθ)] +

+mgz0(cosθ − 1) + U(ψ) = const,

where ψ, θ are the precession and nutation angles, is
the transverse moment of inertia, and z0 is the coordi-
nate of the center of gravity.
If the conditions

z0 < 0, ∂2U/∂ψ2 > 0 for ψ = 0

are met, the function H∗ is positive definite with re-
spect to the variables θ, θ′, ψ, and H∗ = 0 for θ =
θ′ = ψ = 0, and H∗ is independent of ϕ,ϕ′ (ϕ is the
angle of proper rotation of the body).
Therefore, the equilibrium position θ = θ′ = ψ =
ψ′ = ϕ = ϕ′ = 0 of the body is stable with respect to
θ, θ′, ψ for a large ψ′0 and on the whole with respect to
ϕ0, ϕ

′
0.



2.3 Applying Differential Inequalities
Suppose the auxiliary V-function satisfies the differ-

ential inequality [11]

V ′ ≤ ω(t, V (t, x)) (13)

in domain (2) by system (1), where ω(t, v) is the func-
tion continuous for t ≥ 0, v ≥ 0 such that the condi-
tions of existence and uniqueness of solutions are met
for the equation

v′ = ω(t, v), ω(t, 0) ≡ 0 (14)

for each point (t0, v0) from the domain of definition.
T h e o r e m 3. Suppose there exists a V-function for

system (1) that satisfies the condition V (t, x) ≥ a(‖y‖)
and differential inequality (13) in domain (2). Then,
for a large z10 and on the whole with respect to z20, the
equilibrium position x = 0 is

1. y-stable (equiasymptotically y-stable) if condi-
tions (5) are met and the solution v = 0 of equation
(14) is Lyapunov (asymptotically) stable;

2. uniformly y-stable (uniformly asymptotically y-
stable) if conditions (6) are met and the solution
v = 0 of Eq. (14) is Lyapunov uniformly (uni-
formly asymptotically) stable.

Theorem 3 complements the known results obtained
by Corduneanu [11] and their complementary results
obtained in [4].

3 Conclusion
We considered modified stability problems with re-

spect to a part of variables of both the zero equilibrium
for nonlinear non-stationary systems of ordinary differ-
ential equations. As compared to existing assumptions,
we made more general assumptions on the initial val-
ues of variables non-controlled in the course of study-
ing stability.
We obtained the conditions of stability and asymptotic

stability of this type within the method of Lyapunov
functions. We apply the results to the stability prob-
lem with respect to a part of variables of equilibrium
positions of nonlinear holonomic mechanical systems.
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Appendix
Proof of Theorem 1. For any ε > 0, t0 ≥ 0 and any

given number L > 0, by continuity of the functions V
and V ∗ and conditions (4), one can find δ(δ, t0, L) > 0



such that x0 ∈ Dδ yields V (t0, x0) < a(ε). Taking
into account the equality

V (t, x(t; t0, x0)) = (A.1)

V (t0, x0) +

t∫
t0

V ′(τ, x(τ ; t0, x0)) dx

for the arbitrary solution x(t; t0, x0) of system (1) with
x0 ∈ Dδ , the relations

a(‖y(t; t0,x0)‖) ≤ V (t, x(t; t0, x0)) ≤
≤ V (t0, x0) < a(ε)

hold by conditions (4) for all t ≥ t0. Keeping in
mind the properties of the functions a(r), we obtain
‖y(t; t0, x0)‖ < ε for all t ≥ t0. The first part of the
theorem is proved.
If conditions (6) are met, for any ε > 0, t0 ≥ 0 and

any given number L > 0, by continuity of the functions
V, V ∗ one can find the number (ε, L) > 0 independent
of t0 such that x0 ∈ Dδ yields V (t0, x0) < a(ε). The
further proof is similar.
Proof of Theorem 2. Incase (1), the equilibrium po-

sition x = 0 is y-stable for a large z10 and on the
whole with respect to z20 under the theorem’s hypothe-
ses. Therefore, for the number h > 0 there exists such
∆(t0) > 0 that x0 ∈ Dδ yields ‖y(t; t0, x0)‖ ≤ h for
all t ≥ t0.
We show that for x0 ∈ Dδ the relation

limV (t, x(t; t0, x0)) = 0, t→∞ (A.2)

also holds. We assume the contrary. Then, by the con-
dition V ′(t, x) ≤ 0, the inequality V (t, x(t; t0, x0)) ≥
V∗ > 0 holds for all t ≥ t0. Therefore, by V (t, x) ≤
b(‖u‖), V ′(t, x) ≤ −c(‖u‖), the relation

V ′(t, x(t; t0, x0)) ≤ −c(b−1(V∗))

holds. Taking into account equality (A.1), we obtain

0 ≤ V (t, x(t; t0, x0)) ≤
≤ V (t0, x0)− c(b−1(V∗))(t− t0),

which is impossible for a sufficiently large t.
Thus, for x0 ∈ D∆ we have relation (A.2); hence,

lim a(‖y(t; t0, x0)‖) = 0, t → ∞ and, hence, relation
(3) holds. In case (2), the equilibrium position x = 0 is
uniformly y-stable for a large z10 and on the whole with
respect to z20 under the theorem’s hypotheses. There-
fore for the number h > 0 there exists such ∆0 > 0 in-
dependent of t0 that x0 ∈ D∆ yields ‖y(t; t0, x0)‖ ≤ h
for all t ≥ t0.

Let 0 < ε < ∆0. We put

T (ε) = [a(h)− a(ε)]/c(b−1(a(ε)))

and show that V (t∗, x(t∗; t0, x0)) < a(ε) for some
value t∗ ∈ (t0, t0 + T ). Indeed, otherwise a(ε) ≤
V (t, x(t; t0, x0)) ≤ b(‖u(t, x(t; t0, x0))‖) for t∗ ∈
(t0, t0 +T ), hence ‖u(t, x(t; t0, x0))‖ ≥ b−1(a(ε)) for
the same t. Then,

a(ε) ≤ V (t0 + T, x(t0 + T ; t0, x0)) ≤
≤ a(h)− c(b−1(a(ε)))T < a(ε),

which is impossible. The existence of t∗ is proved.
Since the V-function is non-decreasing,
a(‖y(t; t0, x0)‖) ≤ V (t, x(t; t0, x0)) ≤
V (t, x(t; t0, x0)) < a(ε) for all t ≥ t∗; hence,
the inequality ‖y(t; t0, x0)‖ < ε holds for all
t ≥ t0 + T > t∗ if x0 ∈ D∆.
In case (3), we consider the set of initial values x0

such that y0 ∈ Ky, z10 ∈ Kz1 (Ky,Kz1 are arbi-
trary compacts in the y- and z1-spaces, respectively),
‖z20‖ <∞. Let L2 = maxV ∗(y0, z10) for x0 ∈M .
By conditions (6), (7), inequalities V (t, x(t; t0, x0))
≤ V (t0, x0) ≤ V ∗(y0, z10) ≤ L2 hold; hence, by (8),
one can find L1 > 0 such that ‖y(t; t0, x0)‖ ≤ L1 for
all t ≥ t0 and x0 ∈ M . This means that for all t ≥ t0
and x0 ∈ M solutions of system (1) are y-bounded
uniformly with respect to t0, x0 from the domain t ≥
t0, x0 ∈M .
Putting δ(ε) = b−1(a(ε)) and taking into account the

first group of conditions (7), for any ε > 0, t0 ≥ 0 we
have ‖y(t; t0, x0)‖ ≤ a−1(b(‖u(t0, x0)‖) < ε for all
t ≥ t0 if ‖u(t0, x0)|| < δ. Let T (ε) = 2L2/c(δ(ε))
and x0 ∈ M . Assuming ‖u(t, x(t; t0, x0))‖ > δ(ε) for
t ∈ (t0, t0 + T ), we obtain the contradictory estimates

0 ≤ V (t0 + T, x(t0 + T ; t0, x0)) ≤
≤ L2 − c(b−1(a(ε)))T < 0.

Therefore, one can find t∗ ∈ (t0, t0 + T ), for which
‖u(t∗, x(t∗; t0, x0))‖ < δ(ε). Then, taking into ac-
count the previous reasoning, ‖y(t, t0, x0)‖ < ε for all
t ≥ t0 + T > t∗. The theorem is proved.


