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Abstract Digital-PWM based irzero Average Dynamior ZAD
In this paper, we propose a study about bifurcations strategythat was proposed very recently in (Fossas

and chaos in Digital Delayed Pulse-Width Modula- al., 2003), (Angulo, 2004).

tor (PWM) switched converters. The Digital-PWM is

based on Zero Average Dynamic (ZAD) strategy and a

one-period delay in the control law is included . The k, =-k, : J/ks = _l/ko

control parameter of the ZAD strategy, is varied in ]

the whole rangé—oo, c0). In the limits, the dynami-

cal behavior is the same, yielding an annulus-like pa-  fk_ — +owo
rameter space. High richness of dynamics is obtained.
Periodic orbits, periodic windows, period-adding cas-
cades, border-collision bifurcations, chaotic bands and ks = ko Ej/ks = j/ko
chaos are possible depending on fthevalue. The :
switched converter is modelled as a piecewise linear ~E Chaes : [ cheos
system where the analytical equation of the Poiacar ~ 3 CheoswithpT-windows & B 4or-periodic orbi
map is available. = ET-periodic orbit o B 4o7-band chaos
D T-periodic saturated orbit
. Period-adding cascades
Key words
Bifurcation theory, border-collision, chaos, period- Figure 1. Annulus-like parameter space. Qualitative distribution
adding, switched systems, delayed systems. of the nonlinear phenomena. Two bifurcation parametérs:and

1/ks. Two ranges of analysis=ko < ks < ko and—k:o_1 <

—1 —1 . _
1 Introduction koD < kg with ko = 100.

Switched converters can be modelled as piece-
wise smooth systems (Olivar and Fossas, 1996),
(DiBernardeet al,, 199&). The dynamical behavior of Bifurcational analysis of PWM switched converters
these systems has been extensively studied, in practicabased on ZAD strategy was done in (Angulo, 2004),
(Deane and Hamill, 1990), (Yuan and Banerjee, 1998) (Anguloet al., 2005) and (Angulet al., 2008) for real-
and theoretical researches (Olivar, 1997), (Di Bernardo time operation, i.e., without delay time. In (Taborda,
and Tse, 2002). 2004), this converter was studied with one-period de-
Many phenomena in power converters cannot be ex-lay. Different routes to chaos can be observed depend-
plained using the smooth bifurcations approach (for ing on the delay time in the control law, when the ZAD
example, (El Aroudet al,, 2005) or (Zhusubaliyeet control parameterk(,) is varied. For example, with-
al., 2003)), therefore, it is necessary to incorporate the out delay time, the transition to chaos is influenced by
concepts of nonsmooth theory and the discontinuity in- period-doubling and border collision phenomena and
duced bifurcations (DIBs) approach (Di Bernardb denoted as border collision period-doubling bifurcation
al., 199&), (Di Bernardoet al,, 2001), (Banerjee and scenario (Angulet al, 2005).
Grebogi, 2002), (Di Bernardet al., 2006), (Piiroinen With one-period delay, different transitions to chaos
et al, 2004). can be presented depending on the range ofthea-
Digital-PWM controllers are a novel alternative to rameter. Since the ZAD controller is implemented in
control power converters. In this paper, we use the digital platforms, thé:; value can be selected in an ex-



tensive range. Ideally, this range can(bex, o). In t = 7 /v/LC we achieve dimensionless variables and

the limits (i.e., —oo or oo ), the dynamical behavior 4 ameters (Fossas and Zinober, 2001). Therefore, the
is the same, yielding an annulus-like parameter space.g,ck converter can be modelled using the piecewise-
The qualitative distribution of the nonlinear phenom- |inaar switching system given in EG)(
ena in the annulus-like parameter space is presented in '

Fig/l. High richness of dynamics is obtained. Peri- )
odic orbits, periodic windows, period-adding cascades, Fl] — {’V 1] [“‘1} + {O} u )
border-collision bifurcations, chaotic bands and chaos L2 —10] |22 1
are possible depending on the evaluated range. To an-
alyze the wholek, range, two bifurcation parameters where,~ is a dimensionless parameter, related to the
are usedX, and1/k;) and two ranges of analysis are physical parameters of the Buck converter:
defined: —ky < ks < ko and—k ' < k7' < k! LI
wherek, is a real constant. T=r.\VC

In this paper, we present a general description of the
bifurcational behavior in the whole, range. The main
characteristic is the presence of border-collision sce- i
narios. Nowadays, these scenarios are widely stud-t0 the duty cycledy), with T" = TC/m = 0.1767
ied. For example, in (Avrutin and Schanz, 2005) anddy € [0 , T].
and (Avrutinet al, 2007) the influence of the border-
collision bifurcations in period-doubling scenario with-

The control signal:(t) is defined in/8) where centered
pulses are present in each sampling peribyrélated

on bl . enhari 1 if kT <t < KT + di /2
ou p biucaions and the bordercllson nte | it 42 <<t (1
pp - 1if KT+ (T—dp/2) <t<(k+1)T
3)
2 Delayed-PWM Switched Converter Modelling In Eq.4), the centered-PWM signal (given iB)f is
The buck converter (shown in FB).can be described ~ applied to the systenk = Ax +Bu(t). For simplicity,
by the state-space representation of equaltipn ( in Eq.[@) only the first iteration is considered.
{?}:[Rl(?é} {”}jL[O}u (1) Ax+Bif 0<t<%
i -z 0] [q 7 X=4 AX-Bif & <t<(T-%) (4
Ax+Bif (T—%)<t<T

The capacitor voltage and the inductor currentare
the state variables. The control signalakes discrete
values in the sef—1, 1}, in each cycle. Depending on
u, the RLC circuit is fed with+ E or — E' voltage. The
parameters values used arB: = 2012, C' = 40uF,

L = 2mH, E = 40V and a sampling period of
T. = 50us. With the following change of variables 5(x) = 1 — Tirey + k(@1 — T1pey).

This system will be controlled with PWM in order to
achieve, in everyl'-cycle, a zero average in the error
dynamicss(x), which is defined as

x1 is the variable to be controlled;;,.; is the refer-
ence signal and, is the time constant associated to the
SWITCH |0 A =2 ——— first order dynamics given by the surface. This guaran-
tees also that the output follows the reference . ¢.
Note that in our case;,..; = 0, since we will assume
thatz,. iS constant.

e — ol | Compu?ing Fhe exact swtihing tima, (t.he duty cy-

2 ! cle) implies, in each cycle iteration, solving a transcen-

sl XD INA dental equation, and that is a serious inconvenient in
d | ZAD | petyn| DELAY X0 | practice. In order to simplify the duty cycle compu-
X tation, s(x) was approximated to a piecewise linear
function (Angulo, 2004). This function is presented in
Eq.5).
Figure 2. Digital Delayed PWM Switched converter: input (E),
PWM-controlled switch, LC filter, R load, analog/digital converter, 51 (KT)t + s1(kT) if 0<t< %k
delay block and ZAD controller wherk, is the control parameter Spwl(t) ={ (kT) t 4 SQ(kT) if % <t< (T _ %)
andzyry is the desired value in the output. $1 (kT) t+ 83(kT) zf (T _ di) <t<T
(®)

wheres; ands, are the slopes of the lateral and central
in Eq.Q): 1 = v/E, 22 = (1/E)+/(L/C)i, and pieces ofs,,;, respectively. Alsos:(kT) = s(kT)



is the value of the functior(t) at each sampling in-
stant;SQ(kT) = S(kT) + (dk/Q) (.él (I{JT) — $9 (I{JT))
andss(kT) = s(kT) — (T — dg) (81 (ET) — 32 (KT)).
Therefore, the zero average criterion is applied to
Eq.6) where it is possible to obtain an algebraic ex-
pression for computing,. This equation is given in

).

(k+1)T
Spwl (t)dt =0 (6)
kT
4y = 28 (KT) + T (KT) -

4 (KT) — &1 (KT)

Equation [7) can be written as a function of the state
variablesz; andxs in the sampling instamtT": d;, =
c1T1 (k’T) + Coxo (kT) + c3 where

= [(2— 29ke +72kaT — T — kuT) /(~2k,)] .

Co = [(ka +T — ’YksT)/(_st)] )

C3 = [(xlref/ks) + (T/2>] .

If the PWM controller is delayed, the duty cycle is
computed with the one-period delay state variabigs
andz-, which are given in8).

dk = C1T1 ((k — 1)T) —+ Coxo ((k — 1)T) + c3 (8)

1/ko it is possible to study the bifurcational behavior
in the rangek; € (ko, 00).

One point in the state variable bifurcation diagram
means a T-periodic orbit. In general,points in the
state variable bifurcation diagram mean a pT-periodic
orbit. Many points for the same value &f mean
that quasiperiodic orbits, chaotic bands or chaos are
present. In the duty cycle bifurcation diagragrpoints
with ¢ < p can mean a pT-periodic orbit due to sat-
urated cycles. The border-collision scenario is more
clearly visualized in the duty cycle bifurcation diagram.

3.1 Solution of the system

The solution of the switched converter with Centered-
PWM can be computed explicitly, through direct in-
tegration. The states(t) are defined, in each itera-
tion, as a function of the initial conditior(k¥7") and
the duty cycle ¢, which is a function ok((k —1)T)).
The solution is presented in E@)whereA = [— v1;
—10];B=10; 1];vi =x(kT) + A'B; v = v; +

e Al /D ATIB andvy = vy + 2e AT —de/J AR,

v —ATBif  0<t<®
X(t) = { Pty +A 'Bif 4 <t<(T—7k) 9)
eAlyy — 1Bn‘( by <t<T

The flow generated by the solutions of the systems
can describe different trajectories types. Three op-
tions of duty cycles are possible: non-saturated cycles
0 < dy < T, saturated cycles id;, = 0 and saturated
cycles ind, = T. Next, we will study its Poinc#r or
stroboscopic map.

3.2 Poincag Map

Let IT be the Poincd map of the T-periodic orbit of
the system2): 11 : xo — II(Xp). The discrete solution
equivalent to Poincé&rmapll, can be obtained through

The dimensionless parameters associated to the systenqweCt integration, and this leads to EEf).

arev, kg, 1.y andT’. We fixy = 0.35, T' = 0.1767,
Zirer = 0.8 and we will vary parametek,. These

values correspond to a experimental prototype reported

in (Anguloet al., 2006).

3 Analysis based on Poincax Maps

The Delayed-PWM switched converter presented in
the previous section will be analyzed using Poigcar
Maps, which are defined analytically.

First, the continuous solution of the converter is pre-
sented. Later, the T-periodic Poinéamap is com-

puted and the discontinuity boundaries are defined. Us-

ing the Poinca® map, the bifurcation diagram is com-
puted for two analysis ranges:ko < ks < ko and

X((k4+1)T) = ATX(ET) 4 f (di (X((k — 1)T)))
(10)
where f, = f(dp X((k—1)T))) is a vec-
torial function of d,, which is given in
Eq.11) with f, = AT —1]AT'B and
fg=2 (eA(dk/Q) _ eA(T—dk/Q)) A~1lB.
fo+faif0<dy<T
fr, = fo If dp>T (11)
—f. if dp <0

Then, the discontinuous piecewise linear vector field

—k; L<kt< k. 1 wherek, is a real constant. For can be splitted in three regions of the state space, de-
very high k values an auxiliar bifurcation parameter pending on the condition of the duty cycle (saturated or
(1/ks) is used. If we increase the valligk from 0 to non-saturated).



4 Results

If we increase the value of,, in very small incre-

Next, we show a general description of the bifurca- ments of the parameter fromk, to ko, then the bi-

tional behavior in the wholé, range. The main char-

furcation diagram based on the Poirieamap can be

acteristic is the presence of border-collision scenarios. obtained using Edl0). The more representative (non-
First, we show the bifurcations diagrams based on the rigorous) nonlinear sequence in this range is: Chaos

Poincaé map for the whole:; range. Later, we de-

23T-periodic orbit— Chaotic bands— Chaos— 6T-

scribe three different border-collision scenarios in spe- periodic orbit— 1T-periodic saturated orbit- Period-

cific zones ofk, range.
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Figure 3. Duty Cycle Bifurcation diagram wherk; is the bifur-
cation parameter. The analysis range-iskqg < ks < kg with

ko = 100.

Duty Cycle (%)

8
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Figure 4. Duty Cycle Bifurcation diagram Wherb/ks is the bifur-
cation parameter. The analysis ranged’slﬂo’1 < k;l < ko’l
with kg = 100.

4.1 General Description of the Bifurcational Be-
havior
Figures3 and4 show the duty cycle bifurcation dia-
grams for the wholé, range. In FigB, thek; value is
varied in the range-ky < ks < ko with kg = 100,
while the 1/k, value is varied in the rangek:;1 <
k= < k1, (see Figd).

adding cascade 4+ Chaos— Period-adding cascade
2 — Chaos— Chaotic Bands— 26T-periodic orbit
— 13T-periodic orbit— Chaos— 6T-periodic orbit
— Chaos— 23T-periodic orbit— Chaotic bands—
Chaos. Other periodic windows are possible but were
not considered in this paper.

Next, we show some considerations about the bifurca-
tional behavior in the range 100 < k4 < 100 (Fig/3):

— Qualitatively, the rangek; € (—18.5;—100)
has symmetric properties with the range <
(10.5; 100). The sequence: Chaes 23T-periodic
orbit — Chaotic bands— Chaos— 6T-periodic
orbit is similar in the two cases.

— The 1T-periodic orbit is stable only for negativg
values §; € (0; —18.5)). This orbit is saturated to
d = 0%, therefore it has no practical applications.

— The period-adding cascades are present for posi-
tive and close to zeré, values. Betweerk, = 0
andk, = 0.28, the following sequence exists: 23T
— 22T — 21T — 20T — 19T — ... — 16T. Be-
tweenk, = 0.5 andk, = 30, the following se-
quence exists: 12F 11T — 10T — 9T — 8T —
7T — 6T.

— Period-doubling scenario is possible too.
example in the transition 26T-13Tk{ €
(5.7,10.5)) border-collision bifurcations cause
period-doubling phenomena. This fact is similar
to the one reported in (Avrutin and Schanz, 2005).

For

If we increase the value df/k;, in very small incre-
ments of the parameter, froml /k to 1/kq, then the
bifurcation diagram based on the Poirieanap can be
obtained using Edl0). The more representative (non-
rigorous) nonlinear sequence in this range is: Chaos
— Chaotic bands— 40T-periodic orbit— 40T-band
chaos— Chaos. The 40T-periodic orbit is stable in a
wide range. The border-collision bifurcations cause the
birth of the 40T-band chaos and its destruction into full
chaos.

Next, we describe three different border-collision sce-
narios in specific zones @&f; range.

4.2 Scenario 1: Period-adding route to chaos

By reducing the bifurcation parameter froly =
30, the system shows a 6T-periodic orbit with 2 non-
saturated cycles and 4 saturated cycles (ork=n0%
and three ind = 100%), in the following structure:
do—0—do —T—-T—T. At k, = 19.2 a border-
collision bifurcation occurs due to the fact that e
cycle reaches the limid = 0%. Therefore, the new
structure isdg — 0 — 0 — 7' — T — T and it persists
until ks = 10.5. In the rangek, € (5.7;10.5), the



system shows chaotic motion with periodic windows. the duty cycle bifurcation diagram in the rang& <
This scenario will be explained in the next section. For &, < 10.5 is presented in Fig.
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Bifurcation Parameter k Bifurcation Parameter k
Figure 5. State variablexs) Bifurcation diagram wheré& is the Figure 6. Duty Cycle Bifurcation diagram wherk; is the bifur-
bifurcation parameter. The analysis range(s28 < k, < 5. cation parameter. The analysis range &7 < k, < 10.5.
Example of Period-adding route to chaos Example of Chaos with periodic windows

ks = 5.7, the switched converter showq -periodic
orbits with 2 non-saturated cycles and 5 saturated ¢y-4 4 gcenario 3: High-order periodic orbit to
cles (one ind = 0% and four ind = 100%), with the chaotic bands to chaos transition

following structure:dy _.O. dz._T .T T=T. For In the rangek, € (—117; —o0) andks € (90; 00) the

kts - :1'98 ahborder—fgllls?ln blf;rcatjlian (;:cugﬁ anﬁ the system has the following transition: 40T-periodic orbit

struc uric anr?es 0= 1 =82 4 =4 d_ ¢ : — 40T-band chaos- chaos. In the limits, (i.e.;-o0o
Fork, = 2.2 the transitiori’T" — 81" occurs and, after, or oo ), the system has 40T-periodic orbits giving rise

the system shows.a period-adding cascade: 9T — to an annulus-like parameter space. If we increase the
10T — 117 — 12T in a narrow rangek; € (2.2;0.5)).

Betweenk, = 0.5 andks; = 0.28 chaos is present.
The duty cycle structure is shown in Et2f where the
three non-saturated cycles are kept gnd3) saturated
cycles ind = 100% appear withp = 8,9, ..., 12. -

do—di—dy—Ty—Ty— ...~ Tp_3  (12)

Duty Cycle (%)
g

The bifurcation diagram for the state variafjle,) is
presented in Fi& for the rangek; € (5;0.28).

/r ¥al
\){, ﬁx A5,
XK
4.3 Scenario 2: Chaos with periodic windows 0 - " - n - n

Border-collision bifurcations can create period- Bifurcation Parameter 1/k «10°
doubling scenarios, just as it is reported in (Avrutin
and Schanz, 2005). In the approximate rangee
(8;8.33), the switched converter has a transition
from 13T-periodic orbit — 26T-periodic orbit —
chaos. New border-collision bifurcations i, =
(8.009; 8.059; 8.065; 8.254) occur in this transition.
By reducing thek; value from 8.33 backwards, the
13T-periodic with the structuréy — 0 —dy — T — T — value of1/ks from -0.0085, in very small increments
T-T—-d;—0—dy—T—-T—-T changesto the structure of the parameter, then the system has a 40T-periodic
do—dy—do—T—-T-T-T—d7—0—dg—T-T-T orbit with 14 non-saturated cycles , 14 saturated cycles
for k;, = 8.254. The border-collision fok, = 8.065 in d = 0% and 13 saturated cyclesih= 100%. Close
gives rise to 267 -periodic orbit and the following bi-  to (1/k,) = 0 the structure of thd0T-periodic orbit
furcations fork, = 8.059 andk, = 8.009 give rise to changes to 14 non-saturated cycles ,13 saturated cycles
chaos. in d = 0% and 13 saturated cycles ih= 100% due

Figure 7. Duty Cycle Bifurcation diagram Wher]z/ks is the bi-
furcation parameter. The analysis range(is:< k‘:l < 43
Example of high-order periodic orbit to chaotic bands transition



to border-collision bifurcations. After, border-collision
bifurcations give rise to 40T-band chaos.
In Fig7, a border-collision scenario in the birth of the

mooth dynamics of the dc/dc buck convertbionlin-
earity 11, 858-890.
Di Bernardo, M., C. Budd and A. Champneys (2001).

40T-band chaos is shown. The interaction of the sys- Grazing and border-collision in piecewise smooth

tem with the discontinuity boundaries allow the birth of

the chaotic attractor. The characterization of this sce-

nario can be found in (Taboras al, 2007).

5 Conclusion
A study about bifurcations and chaos is shown in Dig-
ital Delayed Pulse-Width Modulator (PWM) switched

systems: a unified analytical frameworRhys. Rev.
Lett. pp. 86:2553—-2556.

Di Bernardo, M., C. Budd and et al (200®ifurcation
and Chaos in Piecewise-Smooth Dynamical Systems
Springer-Verlag. London.

El Aroudi, A., M. Debbat, R. Giral, G. Olivar, L. Be-
nadero and E. Toribio (2005). Bifurcations in dc-dc
switching converters: review of methods and applica-

converters. The control parameter of the ZAD strategy tions.International Journal of Bifurcation and Chaos,

(ks) has been varied in the whole rangeco, cc). In

vol.15, No.5

the limits, the dynamical behavior is the same, creat- Fossas, E. and A. Zinober (2001). Adaptive tracking
ing an annulus-like parameter space. High richness of ~ontrol of nonlinear power converterBroceedings

dynamics has been obtained.
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