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Abstract
In this paper, we propose a study about bifurcations

and chaos in Digital Delayed Pulse-Width Modula-
tor (PWM) switched converters. The Digital-PWM is
based on Zero Average Dynamic (ZAD) strategy and a
one-period delay in the control law is included . The
control parameter of the ZAD strategy (ks) is varied in
the whole range(−∞,∞). In the limits, the dynami-
cal behavior is the same, yielding an annulus-like pa-
rameter space. High richness of dynamics is obtained.
Periodic orbits, periodic windows, period-adding cas-
cades, border-collision bifurcations, chaotic bands and
chaos are possible depending on theks value. The
switched converter is modelled as a piecewise linear
system where the analytical equation of the Poincaré
map is available.
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1 Introduction
Switched converters can be modelled as piece-

wise smooth systems (Olivar and Fossas, 1996),
(Di Bernardoet al., 1998a). The dynamical behavior of
these systems has been extensively studied, in practical
(Deane and Hamill, 1990), (Yuan and Banerjee, 1998)
and theoretical researches (Olivar, 1997), (Di Bernardo
and Tse, 2002).
Many phenomena in power converters cannot be ex-

plained using the smooth bifurcations approach (for
example, (El Aroudiet al., 2005) or (Zhusubaliyevet
al., 2003)), therefore, it is necessary to incorporate the
concepts of nonsmooth theory and the discontinuity in-
duced bifurcations (DIBs) approach (Di Bernardoet
al., 1998b), (Di Bernardoet al., 2001), (Banerjee and
Grebogi, 2002), (Di Bernardoet al., 2006), (Piiroinen
et al., 2004).
Digital-PWM controllers are a novel alternative to

control power converters. In this paper, we use the

Digital-PWM based inZero Average Dynamicor ZAD
strategythat was proposed very recently in (Fossaset
al., 2003), (Angulo, 2004).

Figure 1. Annulus-like parameter space. Qualitative distribution

of the nonlinear phenomena. Two bifurcation parameters:ks and

1/ks. Two ranges of analysis:−k0 < ks < k0 and−k−1
0

<
k−1

s
< k−1

0
with k0 = 100.

Bifurcational analysis of PWM switched converters
based on ZAD strategy was done in (Angulo, 2004),
(Anguloet al., 2005) and (Anguloet al., 2008) for real-
time operation, i.e., without delay time. In (Taborda,
2004), this converter was studied with one-period de-
lay. Different routes to chaos can be observed depend-
ing on the delay time in the control law, when the ZAD
control parameter (ks) is varied. For example, with-
out delay time, the transition to chaos is influenced by
period-doubling and border collision phenomena and
denoted as border collision period-doubling bifurcation
scenario (Anguloet al., 2005).
With one-period delay, different transitions to chaos

can be presented depending on the range of theks pa-
rameter. Since the ZAD controller is implemented in
digital platforms, theks value can be selected in an ex-



tensive range. Ideally, this range can be(−∞,∞). In
the limits (i.e.,−∞ or ∞ ), the dynamical behavior
is the same, yielding an annulus-like parameter space.
The qualitative distribution of the nonlinear phenom-
ena in the annulus-like parameter space is presented in
Fig.1. High richness of dynamics is obtained. Peri-
odic orbits, periodic windows, period-adding cascades,
border-collision bifurcations, chaotic bands and chaos
are possible depending on the evaluated range. To an-
alyze the wholeks range, two bifurcation parameters
are used (ks and1/ks) and two ranges of analysis are
defined:−k0 < ks < k0 and−k−1

0
< k−1

s
< k−1

0

wherek0 is a real constant.
In this paper, we present a general description of the

bifurcational behavior in the wholeks range. The main
characteristic is the presence of border-collision sce-
narios. Nowadays, these scenarios are widely stud-
ied. For example, in (Avrutin and Schanz, 2005)
and (Avrutinet al., 2007) the influence of the border-
collision bifurcations in period-doubling scenario with-
out flip bifurcations and the border-collision in the
three-codimension approach are studied.

2 Delayed-PWM Switched Converter Modelling
The buck converter (shown in Fig.2) can be described

by the state-space representation of equation (1).

[
v̇

i̇

]
=

[− 1
RC

1
C

− 1
L 0

] [
v
i

]
+

[
0
E
L

]
u (1)

The capacitor voltagev and the inductor currenti are
the state variables. The control signalu takes discrete
values in the set{−1, 1}, in each cycle. Depending on
u, the RLC circuit is fed with+E or−E voltage. The
parameters values used are:R = 20Ω, C = 40µF ,
L = 2mH, E = 40V and a sampling period of
Tc = 50µs. With the following change of variables

Figure 2. Digital Delayed PWM Switched converter: input (E),

PWM-controlled switch, LC filter, R load, analog/digital converter,

delay block and ZAD controller whereks is the control parameter

andx1ref is the desired value in the output.

in Eq.(1): x1 = v/E, x2 = (1/E)
√

(L/C) i, and

t = τ
/√

LC we achieve dimensionless variables and

parameters (Fossas and Zinober, 2001). Therefore, the
Buck converter can be modelled using the piecewise-
linear switching system given in Eq.(2).
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where,γ is a dimensionless parameter, related to the
physical parameters of the Buck converter:

γ = 1
RL

√
L
C

The control signalu(t) is defined in (3) where centered
pulses are present in each sampling period (T ) related

to the duty cycle (dk), with T = Tc

/√
LC = 0.1767

anddk ∈
[
0 , T

]
.

u =





1 if kT 6 t 6 kT + dk/2
−1 if kT + dk/2 < t < kT + (T − dk/2)
1 if kT + (T − dk/2) 6 t 6 (k + 1) T

(3)
In Eq.(4), the centered-PWM signal (given in (3)) is
applied to the system:̇x = Ax +Bu(t). For simplicity,
in Eq.(4) only the first iteration is considered.

ẋ =





Ax + B if 0 ≤ t ≤ dk

2

Ax − B if dk

2 < t < (T − dk

2 )
Ax + B if (T − dk

2 ) ≤ t ≤ T

(4)

This system will be controlled with PWM in order to
achieve, in everyT -cycle, a zero average in the error
dynamicss(x), which is defined as

s(x) = x1 − x1ref + ks(ẋ1 − ẋ1ref ).

x1 is the variable to be controlled,x1ref is the refer-
ence signal andks is the time constant associated to the
first order dynamics given by the surface. This guaran-
tees also that the outputx1 follows the referencex1ref .
Note that in our case,̇x1ref = 0, since we will assume
thatx1ref is constant.
Computing the exact switching timedk (the duty cy-

cle) implies, in each cycle iteration, solving a transcen-
dental equation, and that is a serious inconvenient in
practice. In order to simplify the duty cycle compu-
tation, s(x) was approximated to a piecewise linear
function (Angulo, 2004). This function is presented in
Eq.(5).

spwl(t) =





ṡ1 (kT ) t + s1(kT ) if 0 ≤ t ≤ dk

2

ṡ2 (kT ) t + s2(kT ) if dk

2 < t < (T − dk

2 )
ṡ1 (kT ) t + s3(kT ) if (T − dk

2 ) ≤ t ≤ T
(5)

whereṡ1 andṡ2 are the slopes of the lateral and central
pieces ofspwl, respectively. Also,s1(kT ) = s(kT )



is the value of the functions(t) at each sampling in-
stant;s2(kT ) = s(kT ) + (dk/2) (ṡ1 (kT )− ṡ2 (kT ))
ands3(kT ) = s(kT )− (T − dk) (ṡ1 (kT )− ṡ2 (kT )).
Therefore, the zero average criterion is applied to
Eq.(6) where it is possible to obtain an algebraic ex-
pression for computingdk. This equation is given in
(7).

(k+1)T∫

kT

spwl(t)dt = 0 (6)

dk =
2s (kT ) + T ṡ2 (kT )
ṡ2 (kT )− ṡ1 (kT )

(7)

Equation (7) can be written as a function of the state
variablesx1 andx2 in the sampling instantkT : dk =
c1x1 (kT ) + c2x2 (kT ) + c3 where

c1 =
[(

2− 2γks + γ2ksT − γT − ksT
)/

(−2ks)
]
,

c2 = [(2ks + T − γksT )/(−2ks)] ,

c3 = [(x1ref/ks) + (T/2)] .

If the PWM controller is delayed, the duty cycle is
computed with the one-period delay state variablesx1

andx2, which are given in (8).

dk = c1x1 ((k − 1)T ) + c2x2 ((k − 1)T ) + c3 (8)

The dimensionless parameters associated to the system
areγ, ks, x1ref andT . We fix γ = 0.35, T = 0.1767,
x1ref = 0.8 and we will vary parameterks. These
values correspond to a experimental prototype reported
in (Anguloet al., 2006).

3 Analysis based on Poincaŕe Maps
The Delayed-PWM switched converter presented in

the previous section will be analyzed using Poincaré
Maps, which are defined analytically.
First, the continuous solution of the converter is pre-

sented. Later, the T-periodic Poincaré map is com-
puted and the discontinuity boundaries are defined. Us-
ing the Poincaŕe map, the bifurcation diagram is com-
puted for two analysis ranges:−k0 < ks < k0 and
−k−1

0
< k−1

s
< k−1

0
wherek0 is a real constant. For

very highks values an auxiliar bifurcation parameter
(1/ks) is used. If we increase the value1/ks from 0 to

1/k0 it is possible to study the bifurcational behavior
in the rangeks ∈ (k0,∞).
One point in the state variable bifurcation diagram

means a T-periodic orbit. In general,p points in the
state variable bifurcation diagram mean a pT-periodic
orbit. Many points for the same value ofks mean
that quasiperiodic orbits, chaotic bands or chaos are
present. In the duty cycle bifurcation diagram,q points
with q < p can mean a pT-periodic orbit due to sat-
urated cycles. The border-collision scenario is more
clearly visualized in the duty cycle bifurcation diagram.

3.1 Solution of the system
The solution of the switched converter with Centered-

PWM can be computed explicitly, through direct in-
tegration. The statesx(t) are defined, in each itera-
tion, as a function of the initial conditionx(kT ) and
the duty cycle (dk, which is a function ofx((k−1)T )).
The solution is presented in Eq.(9) whereA =

[−γ 1 ;
−1 0

]
; B = [0 ; 1]; v1 = x (kT ) + A−1B; v2 = v1 +

2e−A(dk/2)A−1B andv3 = v2 + 2e−A(T−dk/2)A−1B.

x(t) =





eAtv1 − A−1B if 0 ≤ t ≤ dk

2

eAtv2 + A−1B if dk

2 < t < (T − dk

2 )
eAtv3 − A−1B if (T − dk

2 ) ≤ t ≤ T

(9)

The flow generated by the solutions of the systems
can describe different trajectories types. Three op-
tions of duty cycles are possible: non-saturated cycles
0 < dk < T , saturated cycles indk = 0 and saturated
cycles indk = T . Next, we will study its Poincaré or
stroboscopic map.

3.2 Poincaŕe Map
Let Π be the Poincaŕe map of the T-periodic orbit of

the system (2): Π : x0 7→ Π(x0). The discrete solution
equivalent to Poincaré mapΠ, can be obtained through
direct integration, and this leads to Eq.(10).

x ((k + 1) T ) = eAT x(kT ) + f (dk (x((k − 1)T )))
(10)

where fk = f (dk (x((k − 1)T ))) is a vec-
torial function of dk, which is given in
Eq.(11) with fc =

[
eAT − I

]
A−1B and

fd = 2
(
eA(dk/2) − eA(T−dk/2)

)
A−1 B.

fk =





fc + fd if 0 < dk < T
fc if dk > T
−fc if dk 6 0

(11)

Then, the discontinuous piecewise linear vector field
can be splitted in three regions of the state space, de-
pending on the condition of the duty cycle (saturated or
non-saturated).



4 Results
Next, we show a general description of the bifurca-

tional behavior in the wholeks range. The main char-
acteristic is the presence of border-collision scenarios.
First, we show the bifurcations diagrams based on the
Poincaŕe map for the wholeks range. Later, we de-
scribe three different border-collision scenarios in spe-
cific zones ofks range.

Figure 3. Duty Cycle Bifurcation diagram whereks is the bifur-

cation parameter. The analysis range is:−k0 < ks < k0 with

k0 = 100.

Figure 4. Duty Cycle Bifurcation diagram where1/ks is the bifur-

cation parameter. The analysis range is:−k−1
0

< k−1
s

< k−1
0

with k0 = 100.

4.1 General Description of the Bifurcational Be-
havior

Figures3 and4 show the duty cycle bifurcation dia-
grams for the wholeks range. In Fig.3, theks value is
varied in the range−k0 < ks < k0 with k0 = 100,
while the1/ks value is varied in the range−k−1

0
<

k−1
s

< k−1
0

, (see Fig.4).

If we increase the value ofks, in very small incre-
ments of the parameter from−k0 to k0, then the bi-
furcation diagram based on the Poincaré map can be
obtained using Eq.(10). The more representative (non-
rigorous) nonlinear sequence in this range is: Chaos→
23T-periodic orbit→ Chaotic bands→ Chaos→ 6T-
periodic orbit→ 1T-periodic saturated orbit→ Period-
adding cascade 1→ Chaos→ Period-adding cascade
2 → Chaos→ Chaotic Bands→ 26T-periodic orbit
→ 13T-periodic orbit→ Chaos→ 6T-periodic orbit
→ Chaos→ 23T-periodic orbit→ Chaotic bands→
Chaos. Other periodic windows are possible but were
not considered in this paper.
Next, we show some considerations about the bifurca-

tional behavior in the range−100 < ks < 100 (Fig.3):

– Qualitatively, the rangeks ∈ (−18.5;−100)
has symmetric properties with the rangeks ∈
(10.5; 100). The sequence: Chaos→ 23T-periodic
orbit → Chaotic bands→ Chaos→ 6T-periodic
orbit is similar in the two cases.

– The 1T-periodic orbit is stable only for negativeks

values (ks ∈ (0;−18.5)). This orbit is saturated to
d = 0%, therefore it has no practical applications.

– The period-adding cascades are present for posi-
tive and close to zeroks values. Betweenks = 0
andks = 0.28, the following sequence exists: 23T
→ 22T→ 21T→ 20T→ 19T→ ... → 16T. Be-
tweenks = 0.5 andks = 30, the following se-
quence exists: 12T→ 11T→ 10T→ 9T→ 8T→
7T→ 6T.

– Period-doubling scenario is possible too. For
example in the transition 26T-13T (ks ∈
(5.7; 10.5)) border-collision bifurcations cause
period-doubling phenomena. This fact is similar
to the one reported in (Avrutin and Schanz, 2005).

If we increase the value of1/ks, in very small incre-
ments of the parameter, from−1/k0 to 1/k0, then the
bifurcation diagram based on the Poincaré map can be
obtained using Eq.(10). The more representative (non-
rigorous) nonlinear sequence in this range is: Chaos
→ Chaotic bands→ 40T-periodic orbit→ 40T-band
chaos→ Chaos. The 40T-periodic orbit is stable in a
wide range. The border-collision bifurcations cause the
birth of the 40T-band chaos and its destruction into full
chaos.
Next, we describe three different border-collision sce-

narios in specific zones ofks range.

4.2 Scenario 1: Period-adding route to chaos
By reducing the bifurcation parameter fromks =

30, the system shows a 6T-periodic orbit with 2 non-
saturated cycles and 4 saturated cycles (one ind = 0%
and three ind = 100%), in the following structure:
d0 − 0 − d2 − T − T − T . At ks = 19.2 a border-
collision bifurcation occurs due to the fact that thed2

cycle reaches the limitd = 0%. Therefore, the new
structure isd0 − 0 − 0 − T − T − T and it persists
until ks = 10.5. In the rangeks ∈ (5.7; 10.5), the



system shows chaotic motion with periodic windows.
This scenario will be explained in the next section. For

Figure 5. State variable (x2) Bifurcation diagram whereks is the

bifurcation parameter. The analysis range is:0.28 < k
s

< 5.

Example of Period-adding route to chaos

ks = 5.7, the switched converter shows7T -periodic
orbits with 2 non-saturated cycles and 5 saturated cy-
cles (one ind = 0% and four ind = 100%), with the
following structure:d0− 0−d2−T −T −T −T . For
ks = 4.98 a border-collision bifurcation occurs and the
structure changes to:d0 − d1 − d2 − T − T − T − T .
Forks = 2.2 the transition7T − 8T occurs and, after,

the system shows a period-adding cascade:8T − 9T −
10T − 11T − 12T in a narrow range (ks ∈ (2.2; 0.5)).
Betweenks = 0.5 and ks = 0.28 chaos is present.
The duty cycle structure is shown in Eq.(12) where the
three non-saturated cycles are kept and(p−3) saturated
cycles ind = 100% appear withp = 8, 9, ..., 12.

d0 − d1 − d2 − T1 − T2 − ...− Tp−3 (12)

The bifurcation diagram for the state variable(x2) is
presented in Fig.5 for the rangeks ∈ (5; 0.28).

4.3 Scenario 2: Chaos with periodic windows
Border-collision bifurcations can create period-

doubling scenarios, just as it is reported in (Avrutin
and Schanz, 2005). In the approximate rangeks ∈
(8; 8.33), the switched converter has a transition
from 13T-periodic orbit→ 26T-periodic orbit →
chaos. New border-collision bifurcations inks =
(8.009; 8.059; 8.065; 8.254) occur in this transition.
By reducing theks value from 8.33 backwards, the
13T-periodic with the structured0− 0− d2−T −T −
T−T−d7−0−d9−T−T−T changes to the structure
d0−d1−d2−T−T−T−T−d7−0−d9−T−T−T
for ks = 8.254. The border-collision forks = 8.065
gives rise to a26T -periodic orbit and the following bi-
furcations forks = 8.059 andks = 8.009 give rise to
chaos.

the duty cycle bifurcation diagram in the range5.7 <
k

s
< 10.5 is presented in Fig.6.

Figure 6. Duty Cycle Bifurcation diagram whereks is the bifur-

cation parameter. The analysis range is:5.7 < k
s

< 10.5.

Example of Chaos with periodic windows

4.4 Scenario 3: High-order periodic orbit to
chaotic bands to chaos transition

In the rangeks ∈ (−117;−∞) andks ∈ (90;∞) the
system has the following transition: 40T-periodic orbit
→ 40T-band chaos→ chaos. In the limits, (i.e.,−∞
or ∞ ), the system has 40T-periodic orbits giving rise
to an annulus-like parameter space. If we increase the

Figure 7. Duty Cycle Bifurcation diagram where1/ks is the bi-

furcation parameter. The analysis range is:0 < k−1
s

< 4e−3.

Example of high-order periodic orbit to chaotic bands transition

value of1/ks from -0.0085, in very small increments
of the parameter, then the system has a 40T-periodic
orbit with 14 non-saturated cycles , 14 saturated cycles
in d = 0% and 13 saturated cycles ind = 100%. Close
to (1/ks) = 0 the structure of the40T -periodic orbit
changes to 14 non-saturated cycles ,13 saturated cycles
in d = 0% and 13 saturated cycles ind = 100% due



to border-collision bifurcations. After, border-collision
bifurcations give rise to 40T-band chaos.
In Fig.7, a border-collision scenario in the birth of the

40T -band chaos is shown. The interaction of the sys-
tem with the discontinuity boundaries allow the birth of
the chaotic attractor. The characterization of this sce-
nario can be found in (Tabordaet al., 2007).

5 Conclusion
A study about bifurcations and chaos is shown in Dig-

ital Delayed Pulse-Width Modulator (PWM) switched
converters. The control parameter of the ZAD strategy
(ks) has been varied in the whole range(−∞,∞). In
the limits, the dynamical behavior is the same, creat-
ing an annulus-like parameter space. High richness of
dynamics has been obtained.
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