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Abstract: A solution of astatic attitude control problem for an aircraft is considered. The traditional solu-
tion method on the base of integral for the error can lead to the system dynamic accuracy breakdown. In 
the  paper a contradiction between dynamic accuracy and the request of an astatic control is solved on the 
base of variable structure control principle. 
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1. INTRODUCTION 

In tasks of aircraft control there is the problem to ensure con-
flicting requests to dynamic accuracy. So for attitude high 
maneuverability aircraft control there exists the request of 
astatism to constant input actions and the request of high dy-
namic accuracy for transient functions. Usually, to attain the 
astatism, an integral for a control error is used. But the inte-
gral is used to slow down transient functions. Sometimes, this 
deceleration could be inadmissible for an aircraft to fulfill a 
task of their mission. In particular, such a problem appeared 
in designing the control system for the Buran aircraft (Puch-
kov et al., 1989).  

Especially, this problem arises for aircraft angular control 
under wind disturbances and disturbances that are determined 
by interconnections between channels (Glumov et al., 1997). 
One of possible problem solution for the Buran aircraft was 
the use of the variable structure control principle (SVS) 
(Puchkov et al., 1989; Emel’yanov, 1967a).  

2. THE PROBLEM STATEMENT 

Let us take an aircraft motion equations relative to the angle 
of roll in the following form (Bushgens, 1998): 
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where ( )tγ  is the attack angle; ( )ref tγ  is a desired  function  

of the attack angle; ( )e tδ is an aileron angle; ( )w tβ  is the  
action on an object  that is equivalent to wind and  intercon-
nection disturbances; 1 2 3, ,c c c  are the dynamic coefficients 
that are determined during an aircraft flight . 

During a flight the dynamic coefficients 1 2 3, ,c c c  in the 
aircraft mathematical model (MM) (1) are changed with time 
depending on the dynamic head pressure and other factors 
(Bushgens, 1998). But to derive some analytical results, we 
accept the hypothesis of quasi-stationary regime, namely, we 
will take into account some relatively small interval of time 
where the velocity of dynamic coefficients 1 2 3, ,c c c  is 
changed so small that these velocities can be neglected. Such 
a hypothesis is typical and justified for preliminary engineer-
ing synthesis of an object control laws. For the clarity of pre-
senting the main results of this paper, we consider one point 
of the aircraft trajectory where the coefficients 1 2 3, ,c c c  are 
the following: 

1 2 30,915; 45; 300c c c= = = .                        (2) 
For this point it is required: 

1) the condition of astatism for the coordinate ( )tγ  relative 
to the input control ( )ref tγ ; 

2) the transient function duration on ( )tγ be not more 3 sec-
onds  (relatively, the accuracy  interval 5%± ) ;   
3) the overshooting for the transient function on ( )tγ  be not 
more than  20%;   
4) the condition of astatism for the coordinate ( )tγ  relative 
to the input disturbance ( )w tβ ; 

5) outlier of the coordinate ( )tγ∆  under conditions 
( ) constref tγ =  and step-function ( )w tβ  from ( ) 1w tβ =  to 

( ) 1w tβ = −  be not more than 0.7 ; 

6) the transient function duration on ( )tγ∆  under condi-
tions ( ) constref tγ =  and step-function ( )w tβ  from ( ) 1w tβ =  

to ( ) 1w tβ = −  be not more than 10 seconds (relatively, the 
accuracy  interval 0.1± ).   



 

3. THE MAIN IDEA OF THE CONTROL PRINCIPLE ON 
THE BASE OF VARIABLE STRUCTURE SYSTEM  

The author of the control principle based on the variable 
structure system origin defined it simply in Emel’yanov  
(1967a): “as systems with variable structure (SVS), we will 
understand the systems where connections between func-
tional elements are changed depending on the system state”. 
Of course, the essence of this principle is contained in deriv-
ing these algorithms which lead to a problem solution. 

It should be noted that the main line in SVS development was 
the use of sliding modes (Emel’yanov, 1967b). But for air-
craft with uncertain and no taking into account dynamics in 
mathematical models, it is not always permisiible to use slid-
ing modes. In this paper, use is made of another no less inter-
esting idea that was formulated in Emel’yanov (1967a), Sy-
rov and Puchkov (2006). The idea consists in switching sev-
eral structures of a system during the transient functions to 
avoid negative properties of every structure and to associate 
positive properties. 

4. AN AUTOPILOT STRUCTURE CHOICE FROM 
REQUIREMENTS TO CONTROL INPUT AND 

ANALYSIS OF CONTROL SYSTEM DYNAMICS 

For the conditions 

                      ( ) 0, ( ) 0w reft tβ γ≡ ≠                       (3) 

an autopilot structure for the angle of roll channel could be 
chosen in the form presented in Fig. 1, where ОBJ is an ob-
ject with MM (1); ACT is an actuator; ,e ei ρ are  the autopi-
lot coefficients. 
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 Fig.1. An integral autopilot structure for the angle of roll 
channel 

To simplify the analytical investigation: 

1) nonlinearities and delay in the autopilot structure are not 
taken into account; 

2) actuator, roll and rate-of-roll meters are assumed to be 
ideal.  

But it is necessary to note that these factors are essentially 
affected the system control dynamic properties. It is difficult , 
to take into account this influence analytically so the results 
derived on the base of a simplified MM of the system then 
are subjected to mathematical and imitative simulation and to 
development test. 

A differential equation that determines the motion of coordi-
nate ( )tγ γ=  as the reaction to ( )ref tγ  in the case under con-
sideration can be written in the form 

2 2[ 2 1] ( ) ( )refT D TD t tξ γ γ+ + = ,                   (4) 
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In Fig. 2 the oscillograms for the coordinates of control sys-
tem motion at the angle of roll channel are presented. Here 
the autopilot coefficients are the following:  

            0, 2 ; 0,055e ei ρ= = .                                (5) 

From Eq. (4) with coefficients (5) and from oscillograms in 
Fig. 2 it is seen that the first three specifications for dynamic 
accuracy are satisfied. 

In this paper, we will not pay our attention to the choice of 
concrete autopilot coefficients numbers (5). This choice is 
dictated by a set of conditions. We will take them as preas-
signed ones. 

 

Fig.2. Oscillograms for coordinates of control system motion 
in the angle of roll channel 

5. AN AUTOPILOT STRUCTURE CHOICE FROM 
REQUIREMENTS TO THE DISTURBANCE ( )w tβ  AND 

ANALYSIS OF CONTROL SYSTEM DYNAMICS  

Let us consider the conditions 

       ( ) 0, ( ) 0w reft tβ γ≠ ≡ ,                                             (6) 

and the autopilot structure presented in Fig.1. For this case, 
the coordinate ( )tγ  motion depending on the disturbance is 
determined by the differential equation in the following form  

                2 2[ 2 1] ( ) ( )st wT D TD t k tξ γ β+ + = ,                  (7) 

where T , ξ  are determined in (4),  2
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For the object dynamic coefficients (2) and the autopilot co-
efficients (5) we get the number 0.75stk = . It means that  
requirement 4 is not satisfied.  To satisfy this requirement, we 
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add an integral link respectively to the misalignment  ( )tγ∆ . 
As a result, we obtain the autopilot structure presented in  
Fig. 3 where  intk is the integral coefficient. 
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 Fig. 3. Integral autopilot structure for the roll channel 

As before we take the value of the integral coefficient as the 
preassigned one 

                          int 0, 2k = .                      (8) 

For this case, the coordinate ( )tγ  motion depending on the 
disturbance ( )w tβ  is determined by the differential equation 
in the following form 

       3 2
2 1 0 0( ) ( ) ( ) ( )wD a D a D a t b D tγ β+ + + =               (9) 

where 0 int 3 1 3 2 1 3; ; ( );e e ea k i с a i с a с сρ= = = + 0 2b с= . 

From differential equation (9) it is clear that for the autopilot 
structure presented in Fig. 3 requirement 4 is satisfied. 

To test requirements 5 and 6, we will get oscillograms for the 
coordinates of control system motion. Such oscillograms are 
presented in Fig. 4, where through int ( )u t  we denote a volt-
age from the output of integral link. From these oscillograms 
we see that requirement 4 is naturally satisfied but require-
ments 5 and 6 are not satisfied. 

 

Fig. 4. Oscillograms for coordinates of control system motion 
for the integral autopilot structure 

6. SOLUTION BASED ON THE PRINCIPLE OF 
VARIABLE STRUCTURE CONTROL SYSTEMS 

The problem is that for the task solution all possibilities are 
exhausted: the structure is presented in Fig. 3, coefficients are 
prescribed by equalities (5) and (8). So it is remained only to 

change the autopilot structure during the dynamic process. It 
means that it is remained to use the principle of variable 
structure control systems. For example, if we nullify the 
value of the coefficient intk then we get the autopilot struc-
ture without an integral, see Fig.1. This structure has the 
good speed of acting (see Fig. 2) but it does not provide the 
required astatism to the disturbance ( )w tβ . The integral auto-
pilot structure (see Fig. 3) provides the astatism condition but 
does not satisfy requirements relative to the speed of acting 
and the overshooting for the transient function on ( )tγ∆  un-
der condition of the step-function ( )w tβ . It is necessary to 
combine positive properties for each structure and reduce 
negative ones. For this goal it is necessary to derive an algo-
rithm for switching these structures during the dynamic proc-
ess. Naturally, this algorithm has to be realizable. 

Statement: For a case under consideration it is sufficient to 
nullify the integral device output in the autopilot at a moment 
when the disturbance ( )w tβ  polarity changes. 

The essence of the statement is clear. Really, if the distur-
bance ( )w tβ  polarity changes (see Fig. 4) then the value 

int ( )u t  has to change its polarity too to compensate the ( )w tβ  
influence on the coordinate ( )tγ , for example, from 
(+ int ( ))u t  to ( int ( ))u t− . But in the integral scheme (see Figs. 
3 and 4) changing (+ int ( ))u t to zero value increases not only 
the duration of transient function but also the overshooting. If 
at the time moment of the disturbance ( )w tβ polarity change 
the value (+ int ( ))u t  to nullify instantly then it is possible to 
expect the improvement of the transient function. It is con-
firmed by the oscillograms presented in Fig. 5. Here we can 
see that the overshooting of the coordinate ( )tγ∆  is de-
creased to the permissible value 0.68°; the duration of tran-
sient function is decreased to the permissible 10 seconds. 

So it is shown that all requirements are fulfilled with the al-
gorithm. But for the realization aboard an aircraft it is neces-
sary to solve some principle tasks. For example, 

• in a real flight the disturbance ( )w tβ  is not measured and so 
the information about  the disturbance ( )w tβ  polarity chang-
ing is absent;  

• from the point of the reliability it is more advisable to nullify 
the integral not instantly  but during a relatively small not 
zero time interval; 

• it is necessary to eliminate false switching of the autopilot 
structures  
All these questions will be considered in the next section. 

7. REALIZATION OF THE ASTATIC CONTROL 

 
7.1. The indication of the time moment for the disturbance 

( )w tβ  polarity changing 

From oscillograms (see Fig. 4) it is possible to see that after 
changing the disturbance ( )w tβ  polarity, the misalignment  
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Fig. 5. Oscillograms for coordinates of control system motion 
in the integral autopilot structure with the ideal nullification 

 
( )tγ∆  appears and this misalignment has the sign opposite to 

the sign of int ( )u t . Then in the integral scheme the misalign-
ment ( )tγ∆  goes to zero and int ( )u t goes to the value that is 
opposite to initial sign. Therefore, the appeared difference of 
signs for the values ( )tγ∆  and int ( )u t  indicates the time mo-
ment  for changing the disturbance ( )w tβ  polarity. 

 
7.2. The solution of the task of nullifying the integral not in-
stantly but during a relatively small not zero time interval 
 
To solve the task it is possible to join a negative feedback to 
the integral link of the autopilot with the large coefficient. 
Such a feedback under its engagement nullifies quickly the 
integral output. After nullifying the feedback needs to be dis-
connected.  
 
7.3. Eliminating false the autopilot structures switching 

The misalignment ( )tγ∆  does not keep the null position. 
This coordinate performs small or not small oscillations near 
the null position. There are a lot of reasons for these oscilla-
tions. Really, the most essential reason is the distur-
bance ( )w tβ . But other relatively small reasons could lead to 
false a switching the autopilot structures. Here it is appropri-
ately to use the principle of the “threshold restrictions” that is 
wildly used for solving the reliability problem. The sense is 
simple: to make the nullification scheme to work not at the 
moment ( ) 0tγ∆ ≈  but after ( ) , const 0tγ ε ε∆ ≥ = > . 

7.4. Analog solution for the astatic control algorithm 
 
A possible analog solution for the astatic control algorithm is 
presented in Fig. 6 on the base of the  Matlab + Simulink 
system. Here the time constant for the integral nullification is 
0.01 s. As threshold restrictions are the values ( ) 0.1tγ∆ = . 
In Fig. 7 the oscillograms of the motion for the integral 
scheme with real nullification are presented. If we compare 
the oscillograms presented in Figs. 5 and 7.a, then it could be 
 

 
 
Fig. 6. Analog solution of the astatic control algorithm 

 

 
 
Fig. 7.а. Coordinates of control system motion  the integral 
autopilot structure with the real nullification 
 

 
Fig. 7.b. Coordinates of a control system motion for the inte-
gral autopilot structure with the ideal nullification and with 
the time scale increased 

 
remarked that real analog realization practically does not 
change the dynamic accuracy. In Fig. 7.b a piece of the same 
oscillograms is presented but with the time scale increased. 
Here we see that the beginning the integral output nullifica-
tion is delayed to the point ( ) 0.1tγ∆ =  and the process of 
nullification is not instantaneous but it is exponential. 
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Fig. 8. Block-scheme for a possible digital realization of the astatic control algorithm 
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7.5. Digital solution for the astatic control algorithm  

A possible digital solution for the astatic control algorithm 
aboard aircraft is presented in Fig. 8. Here the value ε  de-
termines the threshold restrictions ( )tγ ε∆ =  that eliminate 
the autopilot structures from false switching. The value 2A  
determines a limitation of the integral output that is needed in 
the control system for the concrete aircraft. The time constant 
for the integral output nullification BT /1= . 
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