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Abstract: A new iterative feedback/feedforward tuning (IFFT) method is presented
for multiple-input multiple output (MIMO) control systems that relies on efficient
computation of the negative gradient of the controller cost function in the frequency
domain. The iterative method is using only one experiment per iteration and it is therefore
suitable for realtime implementation for periodic adjustment of the controller. The
primary target application area of the presented method is self-tuning feedback control
in active noise and vibration control (ANVC).
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1. INTRODUCTION

Iterative feedback tuning (IFT) has been the sub-
ject of intensive research efforts during the past
decade (Hjalmarsson and Gevers M, 1998; Hjalmars-
son, 1999; Hjalmarsson, 2002). Its advantage is that it
does not need modelling, given a stable and reason-
ably functioning controller to start with is available.
Recent efforts were aimed at improving gradient es-
timation (Jansson et al., 2002; Jansson and Hjalmars-
son, 2004) of the control performance criterion, im-
proving stability robustness without modelling (Veres
and Hjalmarsson, 2002) and through spectrum analy-
sis (Kammer et al., 2000).

In (Luo and Veres, n.d.), Iterative Feedback/Feedforward
Tuning (IFFT) in Frequency Domain(FD), i.e., FD-
IFFT, has been proposed to solve SISO ANVC prob-
lems. This paper extends FD-IFFT to Multiple Input
Multiple Output (MIMO) cases that relies on the fre-
quency domain handling of signals and dynamics in
multi-variable systems. It only requires one additional
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experiment for each input channel of the unknown
plant to compute a gradient estimate. Tuning simulta-
neously takes place while the iterative feedback tuning
(IFT) in earlier publications had to perform multiple
experiments for feedback and feedforward controllers.

Although the new approach is applicable to general
control problems in theory, it is particularly suit-
able for control problems with finite frequency spec-
trum signals (disturbances, references and measure-
ments) in practice. The most important target area
of its application is active noise/vibration control
(ANVC) of low frequency sound and vibration that
has been an active research field for almost three
decades. The original idea of ANVC has been pro-
posed in the early 1930s (Lueg, 1934), and the un-
derlying physical theory has been laid down for some
time (Tokhi and Veres, 2002). Many effective methods
have been developed in the last twenty years. There
are design approaches that are model-based, e.g.,
H∞ control (Elliott and Rafaely, 1997), unfalsified-
model based control (Veres and Wall, 2000) and it-
erative correlation based IFT (Karimi et al., 2003).
There are many model-free approaches, which do not
model the plant dynamics with precise models, but



tune the controller parameters directly. One of the
most widely used and well understood methods is
filtered-x LMS algorithm (Morgan, 1980), which can
be made adaptive to track plant dynamics with slow
time variance. Frequency selective filter-based iter-
ative feedback/feedforward tuning (FSF-IFFT) con-
trol (Meurers and Veres, 1999) has also been success-
fully used for periodic disturbance cancelation. There
are very few effective methods available to tune both
feedback/feedforward controllers in ANVC.

The remainder of this paper is organized as follows. In
Section II, the problem of gradient-based tuning con-
trol for ANVC is shortly reviewed in the time domain.
In Section III, the idea of FD-IFFT is proposed and
some implementation topics are discussed. In Section
IV, a series of MIMO simulation examples are pre-
sented to compare two implementations of FD-IFFT.
Finally conclusions are drawn in the last section.

2. GRADIENT BASED TUNING FOR ANVC

In this section, the ANVC problem is generally ad-
dressed, the fundamental definitions and performance
function will be defined.

Following symbols are frequently used in the paper.

∇ Gradient vector of functions
7→ Map to
:= Define or denote
{·}T Transpose
{·}∗ Conjugate and transpose
φ{·} Discrete spectrum of a signal

φ{·}|ω Discrete spectrum of a signal
over frequency subset ω

Φ{·} Discrete frequency response function
of a dynamics

Φ{·}|ω Discrete frequency response over
frequency subset ω

DFT Discrete Fourier transform
diag(xxx) Diagonal matrix with diagonal vector xxx

FRF Frequency Response Function
LTI Linear Time Invariant System

Fig. 1 gives a schematic description of the control
system considered.

Fig. 1. Block diagram of a linear feedforward feed-
back system of ANVC system

The measured output, which is affected by the dis-
turbance ddd ∈ Rnd , is represented by yyy ∈ Rny . G is

the unknown plant dynamics with inputs ddd and uuu and
produce yyy. It can be described as

yyy = G(ddd,uuu) (1)

The control signals from the feedforward controller F
and feedback controller H are denoted by uuu f ∈ Rnu

and uuuh ∈Rnu , respectively. The tunable control system
C comprises the parameterized feedforward controller
F and the feedback controller H:

C(www,rrr,yyy) : F : uuu f = F(wwwF ,rrr)
H : uuuh = H(wwwH ,yyy)

uuu = uuu f +uuuh

(2)

which can be tuned by adjusting their parameter vec-
tors in www := {wwwF ,wwwH} ∈ Rnw .

The disturbance-reference signal rrr ∈ Rnr is obtained
through an unknown but time-invariant dynamics S
from ddd. While the output signal yyy(t) is measurable
and recordable, the disturbance signal ddd cannot be
measured directly.

In case of periodic disturbance ddd, it is always assumed
that the steady output yyy is also periodic. If the ANVC
system has steady output yyy with period N then the
control performance criterion is defined as the average
quadratic performance of a length N output sequence:

J(www) :=
1
N

N−1

∑
t=0

yyyT(t)Qyyy(t) (3)

where Q is a priori known weighting matrix.

The objective of tuning for ANVC is to adjust the
controller parameters www to minimize performance (3).

3. ITERATIVE TUNING IN THE FREQUENCY
DOMAIN

In this section a general framework of frequency
domain iterative feedback-feedforward tuning (FD-
IFFT) is introduced and some implementation issues
are also discussed.

3.1 Gradient estimate in the frequency domain

Considering the MIMO system described by Fig.1, if
there is N-length output data set Y := {yyy(0); . . . ;yyy(N−
1)},yyy(t) := {y1(t), . . . ,yny(t)} ∈ Rny , it can be rewrit-
ten with the order of output channels as Y =
{yyy1, . . . ,yyyny},yyyi = {yi(0); . . . ;yi(N−1)}, i = 1, . . . ,ny.

Denoting ωm := 2π
N m,m = 0, . . . ,N − 1 as m-th dis-

crete frequency for N-length data, φφφ i
y := {φ i

y(ω0); . . . ;
φ i

y(ωN−1)} ∈ CN denotes the discrete spectrum of N-
length yyyi, which can be estimated by φφφ i

y
.= DFT(yyyi).

Furthermore, the discrete spectrum of Y is described



as φφφ y := {φφφ 1
y ; . . . ;φφφ ny

y } ∈C(ny×N)×1. There are similar
notations as used such as φφφ d , φφφ r, φφφ u f and φφφ uh.

In the frequency domain, the plant G is described as
function {φφφ d ,φφφ u} 7→ φφφ y:

φφφ y = ΦG(φφφ d ,φφφ u) = ΦG(φφφ d ,φφφ
1
u, . . . ,φ

nu
u ) (4)

and controller system C is described as function
{www,φφφ r,φφφ y} 7→ φφφ u:

ΦC(www,φφφ r,φφφ y) : ΦF : φφφ u f = ΦF(wwwF ,φφφ r)
ΦH : φφφ uh = ΦH(wwwH ,φφφ y)

φφφ u = φφφ u f +φφφ uh

(5)

In LTI systems, FRF ΦG, ΦH and ΦF are derivative
functions with respect to inputs’ spectrum.

Therefore, some notations can be defined as fol-
lows: ΦG :=

∂φφφ y
∂φφφu

∈ C(ny×N)×(nu×N), ΦF :=
∂φφφu f
∂φφφ r

∈
C(nu×N)×(nr×N), Φ(w,u)

F :=
∂φφφu f
∂wwwF

∈C(nu×N)×(nw f ), ΦH :=
∂φφφuh
∂φφφ y

∈C(nu×N)×(ny×N) and Φ(w,u)
H := ∂φφφuh

∂wwwH
∈C(nu×N)×(nwh).

Considering LTI in Fig. 1, the plant G in frequency
domain can be written with increment format as

∆φφφ y = ΦG(∆φφφ u f +∆φφφ uh) (6)

With regard to the small increment of parameter www,
i.e., ∆wwwF and ∆wwwH , it is straight forward to write

∆φφφ y = ΦG(Φ(w,u)
F ∆wwwF +Φ(w,u)

H ∆wwwH +ΦH∆φφφ y) (7)

Using notations ∆φφφ w
u f := Φ(w,u)

F ∆wwwF , ∆φφφ w
uh := Φ(w,u)

H ∆wwwH

and ∆φφφ y
uh := ΦH∆φφφ y, the incremental relationship (7)

can be graphically described by following Fig 2.

Fig. 2. Block diagram of small increment in frequency
domain

If (I − ΦGΦH)−1 exists, the input/output mapping
∆φφφ w

u 7→ ∆φφφ y can be rewritten from (7) as

∆φφφ y = (I−ΦGΦH)−1ΦG(∆φφφ w
u f +∆φφφ w

uh) (8)

Considering LTI closed loop dynamics T := {G,H},
the FRF of T is defined as

ΦT := (I−ΦGΦH)−1ΦG ∈ C(ny×N)×(nu×N), (9)

From (8), the derivative of φφφ y with respect to con-
troller parameters wwwH and wwwF can be written as

∂φφφ y

∂wwwH
= ΦT Φ(w,u)

H (10)

∂φφφ y

∂wwwF
= ΦT Φ(w,u)

F (11)

According to Parseval’s theorem (Oppenheim and
Willsky, 1996), it is straightforward to write (3) in the
frequency domain format as

J =
1

N2

ny

∑
i=1

N−1

∑
j=0

φ i∗
y (ω j)qiφ i

y(ω j) =
1

N2 φφφ ∗yQF φφφ y (12)

where QF ∈R(ny×N)×(ny×N) is the performance weight-
ing matrix Q in the frequency domain.

The derivative of performance J with respect to con-
troller parameters can be written as

∂J(www)
∂wi

=
2

N2 φφφ ∗yQF ΦT Φ(wi,u)
C (13)

where Φ(wi,u)
C :=

∂ ΦC(www,φφφ y,φφφ r)
∂ wwwi

.

3.2 Tuning of MIMO systems in the frequency domain

In (13) the key to estimate ∂J(www)
∂wi

is to compute ΦT ,
which has ny×N rows and nu×N columns.

In this subsection, some assumptions are introduced
and some estimation techniques are given to simplify
the estimation of ΦT , and the practical tuning strategy
is proposed for the MIMO ANVC problem.

First note that most disturbance signals in engineering
can often be considered to have finite discrete spec-
trum, especially in ANVC problems. For a periodic
output yyy with common period N, only a finite set of
frequencies, ωωω = {ω1, . . . ,ωnω}, are included in φφφ y,
the other elements in φφφ y are 0. In this case, (9) can be
written as finite frequency format as

ΦT |ω = (III−ΦG|ω Φi
H |ω)−1ΦG|ω , (14)

and similarly (13) can be rewritten as

∇J(wwwi) =
2

N2 φφφ ∗y |ω Φi
T |ω Φ(w,u)

C |ω . (15)

Remark 1. It should be noted that, in the previous
subsection, there was no limitation about the spectrum
of yyy, rrr and uuu. Theoretically, the gradient based tuning
described by (10), (11) and (13) is applicable for any
LTI control problems. There is similar idea arised
in (Kammer et al., 2000) for servo control.

Secondly, an indirect estimate of ΦT is more conve-
nient for the online tuning. According to (9), if ΦG



can be estimated, ΦT can be solved since H is known
by the designer.

Note that if ΦG is assumed a LTI system, FRF is
independent with respect to different frequencies. To
ease the notation, for a single frequency FRF of ΦG,
the ΦG(ω) is used in the following discussion, and the
extension to complete ΦG is straightforward.

Note that ΦG(ω) ∈ Cny×nu has ny×nu unknown vari-
ables, which can be solved out through a full-rank
ny×nu equation matrix.

Considering plant G, it is straightforward to get the an
equation system

∆φy(ω) = ΦG(ω)∆φu(ω), (16)

which gives ny equations.

Therefore, considering the case of the full rank equa-
tions, given nu such equation groups as in (16), ΦG(ω)
can be obtained by solving an equation system with
nu×ny equations.

To summarize, under the assumption of a finite fre-
quency set ωωω for the disturbance and assuming an
LTI system, we have following tuning strategy in the
frequency domain:

At the i-th iteration,

(1) Estimate ΦG|ω by solving the equation set from (16);
(2) Calculate Φi

T |ω with (14);
(3) Solve the derivative of J with (15);
(4) Update the controller parameter www with

wwwi+1 = wwwi−µ∇J(wwwi) (17)

where µ is a proper step size to update the
controller.

Remark 2. As above stated, at least nu different equa-
tion groups as (14) are required to solve ΦG(ω), which
means nu pairs of difference data {∆uuu,∆yyy} are re-
quired. In the implementation, in order to get the esti-
mate of ΦG|ω , 1+nu experiments are required to yield
nu pairs of {∆uuu,∆yyy}.

For LTI systems, ΦG|ω is considered unchanged and
can be estimated offline. ΦT |ω(ΦG|ω ,Φi

H |ω) can be
updated with the change of H i. Therefore, to make
NT times gradient based tuning, plus the nu additional
experiments, NT + nu time iterations are necessary to
be performed.

3.3 Further discussion about the implementation

In this subsection some issues are discussed with
regard to the implementation of FD-IFFT in practice.

First note that N should be the common period of yyy
and rrr. In the time domain, (3) vary with the starting
point if N is not the common period of yyy. In the
frequency domain, while φφφ y and φφφ r is the discrete

spectrum based on N length time series data, the
necessary condition to make φφφ y = DFT(yyy) and φφφ r =
DFT(rrr) is that yyy and rrr has common period of N. In
the practice, the common period N is often offline
estimated, otherwise requires a proper long period
experiment to make online estimate.

Secondly, the format of tunable C = {F,H} can vary
in different applications.

It is noted that there is no limitation about the format
of the controllers in (15).

FIR controllers are one of the most convenient con-
troller structures to realize. For some simple ANVC
applications with few frequencies, especially single
frequency control, FIR controllers can give the satis-
fying tuning result with the simple controller structure
and easy tuning algorithm, which is important in prac-
tice.

In order to achieve higher level of cancelation per-
formance and more robust tuning performance, the
Frequency-Selective-Filter (FSF) can be introduced
for each of main frequencies in the signal, which is
called FSF-FD-IFFT in the following discussion.

Fig. 3. Block diagram in frequency domain of one sub-
block in the FSF controller

Fig. 3 shows the typical block diagram of one sub-
block in the FSF controller with nω FSF channels,
which is from the i-th input to the j-th output. For
the finite set of ωωω = {ω1, . . . ,ωnω }, there are nω
FSF channels. Φm

FSF denotes the band-pass FSF with
central frequency ωm, which cascaded with a tunable
complex gain module w ji(m), where m = 1, . . . ,nω .

4. SIMULATION

This section illustrates the usefulness of the FD-IFFT
as tested in simulation using MATLAB. FIR control
structure and FSF-FD-IFFT are tested and compared.
The robustness against the error in the common period
N is discussed with a simulation example.

4.1 Simulation platform

The block diagram of the Simulink-based simulation
is given in Fig. 4. It is a 2-input and 2-output LTI
system. y1, y2, r1 and r2 denote the data acquired
for output and reference signals. Module Ny1, Ny2,
Nr1 and Nr2 denote the senor noise in the output and



reference paths. They are assumed as white noise with
standard deviation 0.001.

Fig. 4. Block diagram for simulation

In Fig. 4, control path Gu is given by




0.1q−8−0.3q−9

1+0.2q−1−0.2q−2
0.01q−6−0.03q−7

1+0.02q−1−0.02q−2

−0.02q−7−0.02q−8

1+0.01q−1−0.01q−2
−0.2q−8−0.3q−9

1+0.1q−1−0.2q−2




(18)

and disturbance path Gd is given by




0.85q−4

1+0.4q−1 0

0
0.95q−6

1−0.2q−2


 (19)

The sampling frequency is 4kHz. The disturbance
signal ddd is a mix of three sine-waves with frequencies
of 50Hz, 80Hz and 100Hz and a white noise signal wt
with standard deviation 0.01, leading to:

d(t) =
1
3
[sin(100πt)+ sin(160π(t−0.091))

+sin(200πt)]+wt (20)

The uncontrolled output is shown in Fig. 5.
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Fig. 5. Initial output without control

The reference signal r(t) is obtained from d(t) by S:

S(q) =




0.8q−8

1+0.8q−1 0

0
0.5q−10

1+0.9q−1


 (21)

4.2 Simulation for FIR-FD-IFFT and FSF-FD-IFFT

In this subsection, two formats of the controller struc-
ture are tested with the above simulated platform. One
is an FIR controller structure (FIR-FD-IFFT), another
is FSF-FD-IFFT.

FIR-FD-IFFT has the 10-th order feedback controller
and the 40-th order feedforward controller. The step
size (adaptation gain) for feedforward controller tun-
ing is µ f = 0.1 and step size for feedback controller
tuning is µh = 0.02.

In FSF-FD-IFFT, 1st-order Butterworth bandpass fil-
ters are online designed according to the spectrum of
yyy. The bandwidths of the FSF were given by the dis-
turbance frequency±10 percent which also eliminates
the unwanted white noise in the tuning. The step size
(adaptation gain) for feedforward controller tuning is
µ f = 8.0 and step size for feedback controller tuning
is µh = 2.0.

The signal period is defined as N = 800. The iter-
ation time of tuning is set 50. All the initial con-
trollers are set to zeros. The weighting matrix is Q =
diag([1.00.8]). The initial performance criterion with-
out control is 0.2443. In order to perform an initial
estimate of G, only the sub-block from rrr1 to uuu f 1 in H
is changed to be 0.2 in the 2nd iteration, and only the
sub-block from rrr2 to uuu f 2 in H is changed to be 0.2 in
the 3rd iteration.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

P
er

fo
rm

an
ce

Iteration, time

Fig. 6. Performance update in FIR-FD-IFFT
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Fig. 7. Final output of FIR-FD-IFFT

Fig. 6 shows the updating performance in FIR-FD-
IFFT: The 2nd and 3rd iteration are manual updates,
which give J(2) = 0.2432 and J(2) = 0.2391. After



50 iterations, the final performance is J = 0.0371 with
8.2dB cancelation. The final output with control is
shown in Fig.7.
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Fig. 8. Performance update in FSF-FD-IFFT
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Fig. 9. Final output of FSF-FD-IFFT

Fig. 8 shows the updating performance in FSF-FD-
IFFT. After 50 iterations, the final performance is
J = 0.0026 with 19.8dB cancelation. The final output
with control is shown in Fig.9.

It is obvious that FSF-FD-IFFT can supply much
better tuning performance than FIR-FD-IFFT.

5. EPILOGUE

A hybrid iterative feedback/feedforward tuning ap-
proach in the frequency domain has been presented
that uses an innovative way of computing gradient
estimates of the controller cost function. Compared to
IFT in the time domain, this method simplifies both
control structure and control operation.

The method is ideally suitable for ANVC applications
with feedback and feedforward controllers. After pro-
viding a general general idea about iterative tuning in
the frequency domain, some detail issues were dis-
cussed for applications. The effectiveness and flexi-
bility of FD-IFFT was shown by simulation examples.

As the basic scheme was outlined and tested in sim-
ulation, the robustness of controller is still question-
able. Future work on robustification will be possible to
perform directly in the frequency domain. Extension
of the general framework to other control application
except ANVC also requires further research.

REFERENCES

Elliott, S. J. and B. Rafaely (1997). Frequency-domain
adaptation of feedforward and feedback con-
trollers. In: Proc. ACTIVE’97. pp. 75–92.

Hjalmarsson, H. (1999). Efficient tuning of linear
multivariable controllers using iterative feedback
tuning. Int. J. Adaptive Control and Signal Pro-
cessing 13, 553–572.

Hjalmarsson, H. (2002). Iterative feedback tuning -
an overview. Int. J. Adaptive Control and Signal
Processing 16, 373 – 395.

Hjalmarsson, H. and Lequin O. Gevers M (1998). It-
erative feedback tuning: theory and applications.
IEEE Control Systems Magazine 18(4), 26–41.

Jansson, H. and H. Hjalmarsson (2004). Gradient
approximations in iterative feedback tuning for
multivariable processes. Int. J. Adaptive Control
and Signal Processing 18(8), 665–681.

Jansson, H., H. Hjalmarsson and A. Hansson (2002).
On methods for gradient estimation in IFT for
MIMO systems. In: 15th World Congress on Au-
tomatic Control.

Kammer, L. C., R. R. Bitmead and P. L. Bartlett
(2000). Direct iterative tuning via spectral anal-
ysis. Automatica 36(9), 1301–1307.

Karimi, A., L. Mikovi and D. Bonvin (2003). Itera-
tive correlation-based controller tuning: applica-
tion to a magnetic suspension system. Control
Engineering Practice 11, 1069–1087.

Lueg, P. (1934). Process of silencing sound oscilla-
tions, U.S. pantent 043,416.

Luo, Jian and S. M. Veres (n.d.). Iterative feed-
back/feedfoward tuning control in the frequency
domain for AVNC. In: ECC’07. Acceptted.

Meurers, T. and S. M. Veres (1999). Iterative design
for vibration attenuation. Int. J. Acoustics and
Vibration 4(2), 79–83.

Morgan, D. R. (1980). An analysisi of multiple corre-
lation cancellation loops with a filter in the auxil-
iary path. IEEE Trans. on Acoustics, Speech and
Signal Processing 28(4), 454–467.

Oppenheim, A. V. and A. S. Willsky (1996). Signals
and Systems. 2nd ed.. Prentice Hall.

Tokhi, O. and Veres, S. M., Eds. (2002). Active sound
and vibration control: theory and applications.
IEE.

Veres, S. M. and D. S. Wall (2000). Synergy and
duality of identification and control. Taylor &
Francis, London.

Veres, S. M. and H. Hjalmarsson (2002). Tuning for
robustness and performance using iterative feed-
back tuning. 42nd IEEE Conference on Decision
and Control 4, 4682 – 4687.


