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Abstract
The article analyzes the possibility of using nonlinear

elastic elements as a suspension of the working element
of resonant vibrating machines with two unbalance vi-
bration exciters is analyzed. The elastic characteristic of
the suspension is described by an exponential law, which
ensures that the natural frequency remains unchanged re-
gardless of the system mass. Static characteristics of the
vibration exciter motors are taken into account. A sys-
tem of differential equations describing movement of the
system depending on the processed material mass is ob-
tained. Amplitude-frequency characteristics depending
on the power supply voltage, as well as on the debal-
ance rotational speed are obtained for different values
of material mass. The stability of the obtained periodic
solutions is analyzed. The constancy of resonant ampli-
tude and frequency of the working element vibrations
at various values of material mass is shown. The re-
sults obtained confirm the advisability of using an equal-
frequency suspension of the working element for reso-
nant vibrating machines.
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This article is dedicated to the memory of Professor
Ilya Izrailevich Blekhman, who died from COVID-19 at

the very beginning of this year (2021). We were all con-
nected with Professor Ilya Blekhman not only by com-
mon scientific interests, but also by long-term personal
relationships. Almost all of our research, and not only
on this issue, we discussed with him in personal meet-
ings. One of us, Professor Grigory Panovko, knew Ilya
Blekhman from childhood. The families of Professor
Yakov Panovko (father of Grigory) and Ilya Blekhman
have been friends for many decades. The memory of Ilya
Blekhman - an outstanding mechanical scientist, who
had the deepest understanding of mechanics and its man-
ifestations in nature and technology, a very bright and
noble person with amazing intuition, will always be in
our hearts. And we will pass this memory on to our col-
leagues and students.

1 Introduction
One of the main ways to excite vibrations of technolog-

ical vibromachines is force excitation using unbalanced
vibrators [Blekhman, 1994; Vaisberg, 1986; Lavendel,
1981]. Usually vibromachines of this class operate in a
above-resonant mode. However, this mode requires the
use of overpowered electric motors, which is necessary
to overcome the resonance.

The use of the most effective resonance modes is so-
phisticated by their instability, which appears even with
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minor changes in the system parameters, as well as due
to nonlinearities arising from the working element in-
teraction with the processed material and/or with a vi-
bration drive of limited power [Gouskov and Panovko,
2012; Cveticanin et al., 2017; Nayfeh and Mook, 1995;
Sinha et al., 2020; Yaroshevich, 2020]. All this in-
creases the complexity of maintaining near resonance
modes and leads to the need to use systems for control-
ling the electric motors rotational speed [Fradkov et al.,
2013; Panovko et al., 2015].

This article explores the possibility of using a nonlin-
ear elastic suspension in order to ensure the constancy of
the machine resonant frequency at variable mass of the
processed material.

The design scheme of a single-mass vibrating machine
is shown in Fig. 1. The working element is an abso-
lutely rigid tray 1 mounted on non-linear springs 2 with
the identical resilient force characteristics. To excite os-
cillations, two identical unbalanced vibration exciters 3
are used, connected to a single source of electric volt-
age U . The driving torques of the motors M(U) en-
sure their synchronous in-phase rotation in opposite di-
rections, which creates a unidirectional disturbing force.
It is assumed that the mass of material 4 during vibration
treatment can slowly change over time. The working ele-
ment oscillatory movement only in the vertical direction
is considered. The moment of friction forces on the mo-
tor shaft is taken into account, as well as the dissipative
force in the springs.

Figure 1. Vibrating machine design scheme.

The main idea in the selection of the type of elastic sus-
pension nonlinear characteristics is based on the princi-
ple of an equal-frequency shock absorber, which ensures
the constancy of the natural vibration frequency of the
system regardless of the change in mass [Panovko and
Gubanova, 1987]. Assuming that the elastic properties
of both springs are equal, their total reaction will be de-
scribed by the function F (X), whereX is the shortening
(deflection) of the equivalent spring under applied load
F = mg, m = m0g (1 + µ) , µ = mw/m0, where
m0 is the mass of the working element with vibration
exciters; mw ∈ (0, mwmax) is the processed material
mass. Vibrations of the system will be considered in the
direction of the x axis relative to the static equilibrium

position of the system under the applied load. In accor-
dance with [Panovko and Gubanova, 1987], the elastic
characteristic of the equivalent spring relative to the co-
ordinate x = X −Xst (Xst - static deflection) is deter-
mined by the expression

F (x) = m0g (1 + µ)

[
exp

(
p2x

g

)
− 1

]
,

p – resonance frequency.

2 Equations of motion
In the case of equality of vibration exciters inertial and

torque characteristics and synchronous in-phase rotation
of the debalances, the motion of the system will be de-
scribed by the following system of differential equations

(1 + µ)m0ẍ+ bẋ+m0 (1 + µ) g exp
(
p2x
/
g
)
−

− (1 + µ)m0g = −mee
[
ϕ̈ cosϕ− (ϕ̇)

2
sinϕ

]
,

Jϕ̈+mee [ẍ cosϕ+ g cosϕ] =M(U)−MC ,
(1)

where ϕ = ϕ(t) – debalances rotation angle, J – de-
balance inertia moment relative to its axis of rotation,
e – debalances eccentricity, b – damping coefficient of
equivalent spring, M(U) = c0U (1− ϕ̇/(c1U)) – driv-
ing torque, U – power supply voltage, c0, c1 - electric
constants of the motor; MC = γC ϕ̇

2 – moment of fric-
tion forces in the debalances bearings, γC– coefficient of
friction.

To present the results in general form, let us bring sys-
tem (1) to a dimensionless form:

ξ′′ + 2ζ
(1+µ)ξ

′ − exp (−ξ) + 1 =

= − ε
(1+µ)

[
ϕ′′ cos (ϕ)− (ϕ′)

2
sin (ϕ)

]
,

ϕ′′ + η [ξ′′ cos (ϕ) + cos (ϕ)] =

= γ0

(
u− ϕ′

ω0

)
− γ(ϕ′)

2
,

(2)

where

x =
g

p2
ξ; t = τ/p; U = U0u; ζ =

b

2m0p
; γ =

γC
J

;

ε =
me

m0

ep2

g
; η =

meeg

Jp2
; γ0 =

c0U0

Jp2
; ω0 =

U0

c1p
.

3 Simulation results analysis
The system of equations (2) was solved by Newton’s

method in combination with the parameter continuation
method [Nayfeh and Balachandran, 2004] for the follow-
ing values of the system parameters: ζ = 0.025; ε =
0.29; η = 0.035; ω0 = 4.23; γ0 = 0.55; γ = 0.04.
The µ parameter had been varied from 0 to 0.5. Fig.
2 shows the graphs of dimensionless amplitudes (half
of peak-peak amplitudes) of the working element vibra-
tions Aξ depending on the dimensionless voltage u at
various values of the processed material relative mass µ.
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Here and in the following figures, numbers indicate: 1 -
µ = 0; 2 - µ = 0.16; 3 - µ = 0.33; 4 - µ = 0.5.

Figure 2. Vibration amplitude Aξ depending on the power supply
voltage u: 1 - µ = 0; 2 - µ = 0.16; 3 - µ = 0.33; 4 - µ = 0.5.

One can see that the amplitudes maxima for all con-
sidered values of the material mass appear at the same
value of voltage u ≈ 0.3. Unstable states of the sys-
tem are shown by bold lines and crosses. Note that un-
stable modes in the main resonance area appear only at
µ ≥ 0.33, which is associated with an increase in the
total moment of all resistance forces.

Fig. 3 shows graphs of dimensionless amplitudes de-
pending on the average rotation speed of the debalances
ωavg at various values of the material mass. It is impor-
tant to note here that for all graphs the skeleton curves
(dashed line) coincide with each other.

Figure 3. Vibration amplitude Aξ depending on average rotation
speed ωavg : 1 - µ = 0; 2 - µ = 0.16; 3 - µ = 0.33; 4 - µ = 0.5.

Fig. 4 shows the evolution of multiplicators for µ = 0
(Fig. 4(a)) and µ = 0.5 (Fig. 4(b)) for all values of
the material mass from a given range, a period doubling
bifuraction is observed, and Neimark-Sacker bifurcation
also occurs at µ = 0.35.

(a)

(b)

Figure 4. Multiplicators evolution at µ = 0 (a) and µ = 0.5 (b).

4 Conclusion
The dynamics of a vibrating machine with an unbal-

ance vibration exciter and a nonlinear elastic suspension
of the working element has been investigated. The re-
silient force characteristic of the elastic element is de-
scribed by exponential law. As a result of the numeri-
cal solution of the obtained equations system, taking into
account the static characteristic of the driving motor, the
constancy of the resonance frequency and vibrations am-
plitude was established, regardless of the system mass in
the selected range of its variation. The results obtained
show that the use of such a spring makes it possible to
obtain a constant resonant vibration frequency of the ma-
chine in a wide range of material mass changes.
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