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Abstract
Centralized strategies applied to large-scale systems

require a vast amount of computational and communi-
cation resources. In contrast to them, distributed strate-
gies offer higher scalability and reliability. However,
communication and coordination among agents tremen-
dously impact performance of systems controlled in the
distributed manner. The existing methods lead to clus-
tering, where the coordination between agents is lim-
ited to groups of entities to be controlled. The size of
these groups are usually known in advance. In turn,
many systems exhibit self-organization and dynamically
form clustering structure. In that sense, control meth-
ods should adapt to such dynamic structures offering
the same balance between performance and communi-
cation/computational demands. In this paper, we pro-
pose a new approach to complex system control based
on efficient cluster (mesoscopic) control paradigm. We
demonstrate its efficacy in scenarios, where a group of
agents should reach a certain goal.
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1 Introduction
During the recent decades, we have witnessed a ten-

dency to gathering a deluge of data generated by hetero-

geneous sources spatially distributed across wide geo-
graphical areas. The examples include vehicle and traffic
systems, autonomous robotic networks, and others. Cen-
tralized strategies applied to such large-scale systems re-
quire a vast amount of computational and communica-
tion resources. In contrast to centralized approaches,
where a single controlling unit has full information about
the system, distributed strategies rely on system decen-
tralization. These strategies are usually applied to local
controllers also referred to as agents that control differ-
ent subsystems.

Distributed strategies offer higher scalability and re-
liability. However, communication and coordination
among agents tremendously impact performance of sys-
tems controlled in the distributed manner. Therefore,
researches have started exploring strategies that seek a
balance between optimality and coordination efforts in-
fluenced by communication and computational demands
[Dörfler et al., 2014; Yang et al., 2020]. The new line of
works has led to system partitioning problem, in which
the overall system is decomposed into several subsys-
tems and control inputs are assigned to some agents
within the subsystems. By other words, the agents are
arranged into clusters that determine their actions using
intra-area communication, i.e., they do not communi-
cate with agents outside their cluster [Fele et al., 2017].
Other works study sparsity-promoting control strategies
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that reduce a set of communication links by generating
a sparse structure of controller matrices [Furieri et al.,
2020]. Furthermore, hierarchical architecture may re-
duce the communication demand and provide good sys-
tem performance. In hierarchical control, the first level
consists of nodes in a group pursuing its leader within
the group. In the second level, the weighted centroid
of a group chases the weighted centroid of its leading
group. A similar extension holds for more levels. It
was shown that hierarchical control leads to an increased
rate of convergence [Mukherjee and Ghose, 2016]. Be-
sides the trade-off between system performance and re-
source demands, some papers focus on handling the sys-
tem failures occurring due to switching topologies, com-
munication delays, and unpredicted malfunctions [Schif-
fer et al., 2017].

The described methods lead to clustering, where the
coordination between agents is limited to groups of
entities to be controlled. The size of these groups
are usually known in advance or/and adjusted to sys-
tem performance. In turn, many systems exhibit self-
organization and dynamically form clustering structure
[Granichin and Uzhva, 2021]. In that sense, control
methods should adapt to such dynamic structures offer-
ing the same balance between performance and commu-
nication/computational demands.

Estimating cluster structure in a system still remains
a relevant task nowadays. During the last two decades,
advances in randomized signal acquisition strategies al-
lowed to treat data compression in a novel efficient
way. For example, the compressed sensing methodol-
ogy [Candes et al., 2006; Donoho, 2006] opened op-
portunities for data acquisition with compression “on
the fly” by utilizing consecutive randomized sums of
the incoming signal. This approach utilizes signal spar-
sity for recovery from compressed codes, which is in-
nate for most of the natural or artificial meaningful sig-
nals. In our related work [Granichin and Uzhva, 2022],
it was shown how compressed sensing can be embed-
ded in cluster control of complex multiagent systems.
Due to the clusterization, state vector of the system ex-
hibits sparse features, which are then used in a lower-
dimensional system representation and corresponding
cluster control. We further develop this idea in the cur-
rent work

Our contribution is threefold. First, we develop a new
approach to complex system control, based on efficient
cluster (mesoscopic) control paradigm. We propose a
novel framework for complex multiagent system analy-
sis, which aims to utilize system sparsity for cluster con-
trol synthesis. Second, with the help of the compressed
sensing methodology, a new distributed cluster control
algorithm is developed. By receiving sparse system fea-
tures in a latent space, it is shown how these features
can be exploited to synthesize efficient control action.
And third, a universal hardware module for evaluation
of aggregated cluster characteristics is proposed. A pos-
sible approach to implementing a hardware device for ef-
ficient cluster control computation according to the pro-

posed theory is described.
The rest of the paper is organized as follows. In Sec-

tion 2, a general approach to complex systems modeling
and cluster synchronization regime is described. Next,
Section 3 provides a description of the proposed clus-
ter flows control framework. Section 4 consequently de-
velops the theoretical background revealed in the previ-
ous ones by illustrating a novel approach to cluster con-
trol using the compressed sensing methodology. Then,
in Section 5, a distributed protocol for application of
the compressed-sensing-based control among agents in
a system is described. Next, Section 6 unifies the pro-
posed approach in the form of an algorithm. The fol-
lowing Section 7 describes a hardware implementation
of the proposed algorithm. And finally, Section 8 pro-
vides numeric simulations, which is then followed by a
conclusion.

2 Processes of Formation of Emergent (appearing)
Artificial Intelligence

First, we need to provide a definition of a complex sys-
tem, for further motivation of complex systems study
to become clear. Next, two ways of system modeling
are described, with corresponding pros and cons of both
mentioned. Finally, we discuss the possible peculiari-
ties of complex systems dynamics (stability and cluster-
ization), which emerge due to internal and external pro-
cesses, relatively to the system.

2.1 Understanding of Complex Systems
As we study patterns and their evolution in time, we

may find that some generalization and corresponding dy-
namic analysis problems may appear exceptionally chal-
lenging. For example, consider the task of forecasting,
which requires us to predict the weather in future. As
we dive into this problem, we may find that near future
weather W 1

F (about a few hours) is quite similar to the
present one WPR, so that future can be thought as of
slightly transformed present:

W 1
F = T (WPR) ≈WPR,

where T is the corresponding transformation. However,
as we progress through time by stacking these trans-
formations (Tn(WPR), where T repeatedly applied to
WPR n times, corresponding to a forecast for multiple
weeks ahead), future

Wn
F = Tn(WPR)

becomes less and less similar to present; moreover, in
case present weather would be slightly different W̃PR

comparing to WPR (i.e. W̃PR ≈ WPR), then stacking
the same transformations for W̃PR would result in some
future weather

W̃n
F = Tn(W̃PR),
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which may differ significantly from Wn
F . In other words,

W̃PR ≈ WPR does not necessarily lead to W̃n
F ≈ Wn

F .
This is due to the nature of T , which is governed by
the way various internal components and external distur-
bances (e.g. air molecules, the Sun) of the climate sys-
tem interact between each other, forming a networked
system. The amount of the components and intercon-
nections between them leads to inability of deriving and
computing precise model of T using limited resources
and obvious reasoning. Given the example above, we
can now define a complex system as a composition of a
large number of simple interacting elements, placed in
some environment, with which they also perpetually in-
teract. This leads to the resulting overall system behavior
to be unpredictable (by classical approaches) on distant
time horizon, given simple behavior of its components—
a special property, which we call emergence.

With the above being said, we can outline two main
branches to dealing with complexity:

1. Quantitative complexity reduction: apply unjusti-
fied amount of resources.

2. Qualitative complexity reduction: apply unconven-
tional study approaches.

Nowadays, quantitative approaches tend to become in-
feasible, due to the resource limitations mentioned
above. Thus, we aim to develop advanced mathemati-
cal approaches to complex system modeling.

2.2 Complex Systems Modeling
As it was noted in Introduction, dynamic way of mod-

eling allows for intuitively clear representation of sys-
tems, that evolve in time. Three approaches, which we
will discuss further, are of the highest interest:

1. Discrete (automata) modeling [Ravazzi et al., 2021;
Li et al., 2020; Silva, 2014].

2. Continuous dynamical systems modeling [Strogatz,
2000; Arnold and Silverman, 1987; Gazi and Fi-
dan, 2007; Proskurnikov and Granichin, 2018; ?;
Granichin et al., 2020b; Fradkov, 2007].

3. Field theory modeling [Hu et al., 2019; Luo et al.,
2021].

According to the first method, a complex system is
composed of finite number of elementary autonomous
units (further called agents), each of them having their
individual state, which changes iteratively in time. A
corresponding system model can be expressed in a dif-
ference equation; as an example, consider an autoregres-
sive model:

xi[t] = c+

K∑
k=1

θkxi[t− k] + wi[t], (1)

where xi[t] is the state of an agent i at time t, c is a con-
stant, θ1, . . . , θp are parameters, and wi[t] is a stochastic
disturbance. At p = 1, we obtain a so-called Markov

process, which in fact is subject to lack of memory due
to xi[t] being dependent only on its previous iteration
xi[t − 1]. Model (1) can be augmented by adding non-
linearity and inter-connections between multiple neigh-
bor agents. Moreover, probabilistic variations of the au-
tomata models based on the Markov chain formalism
can be considered [Li et al., 2020]. We also include
Poincaré and Lorenz maps [Strogatz, 2000], notwith-
standing such models are conventionally associated with
dynamical systems. Summing up, automata approach is
convenient for describing stochastic discrete processes
(therefore any discrete dynamical system can be viewed
as an automata system), which is relevant in the context
of large-scale systems with a numerous number of digi-
tal agents.

Despite the automata modeling utilizes iterative ap-
proach to describe system evolution and, accordingly,
such models may have straightforward implementation,
cyber-physical systems may often continuously depend
on time. A corresponding dynamical systems approach
is thus favorable, as it allows to express a complex sys-
tem (composed of N agents) dynamics using ordinary
differential equations:

ẋi(t) = fi(xi(t), ui(t), wi(t)), (2)

where xi(t) ∈ Rni is a so-called state vector of an agent
i ∈ N = {1, . . . , N} (ni is the number of variables
required to describe the agent state), ui(t) is a local con-
trol action, and wi(t) ∈ Rmi is a stochastic disturbance.
Moreover, this method of systems modeling is not prone
to lack of memory phenomenon mentioned above, due
to more freedom available over choosing time intervals
xi(t) defined on. Continuous dynamical systems are also
easy for precise analytical analysis,

Finally, field theory approach may be regarded as the
most generalized one (perhaps derived from Equation (2)
in the limit N → ∞), since it is able to model a contin-
uum of agents:

ẋ(λ, t) = f(λ, x(λ, t), u(λ, t), w(λ, t)), (3)

where agents are now “enumerated” (or rather localized)
by a point λ in R or its equinumerous subset (i.e. also
with the cardinality of the continuum).

Modern cybernetics is mainly focused on discrete and
continuous dynamical system modeling, while field the-
ory modeling appears too early to discuss about. Con-
sequently, we further focus on dynamical systems with
finite number agents, without losing a hope that the de-
veloped theory can be generalized into model (3).

2.3 Clusterization
In Equation (2), control input u regulates the behav-

ior of the system by setting the rules of the agent state
change, depending on the states of neighbor agents and
other environmental factors. Artificial complex systems
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are often required to change its global state in a con-
trollable manner, so that the rules u should lead to the
specified global goal. Aiming to study control inputs u,
we first should provide a clear description of possible
goals, with corresponding models describing such goals
rigorously. In [Fradkov, 2007], five types of goals are
defined:

1. Stabilization (bringing the all agent states x to their
corresponding constant state vectors x∗):

lim
x→+∞

x(t) = x∗.

2. Tracking (bringing agent states to some function
x∗(t), perhaps different for each agent):

lim
x→+∞

|x(t)− x∗(t)| = 0.

3. Excitation of oscillations:

lim
x→+∞

G(x(t)) = G∗

for some scalar function G(x).
4. Synchronization (matching all agent states):

lim
x→+∞

|xi(t)− xj(t)| = 0.

5. Limit set modifications (qualitative changes to the
system, e.g. modifications of bifurcation types).

However, this classification is primarily applicable to
quite simple systems, primarily single-element ones. As
for the multiagent systems, synchronization-type goals
are usually of the most interest, since they relate to pat-
tern emergence and complexity reduction possibilities.
Indeed, in case all agent states converge to a single syn-
chronous stable manifold, the whole system can then
be controlled as one bunch of equally behaving compo-
nents, thus requiring a single control input.

Recently, in the related works [Proskurnikov and
Granichin, 2018; Granichin and Uzhva, 2020; Granichin
et al., 2020b] it was noticed that many artificial (and nat-
ural) complex systems exhibit so-called cluster synchro-
nization (also referred to as clusterization), according to
which agents synchronize in groups: system components
from one group synchronize, while the ones belonging
to different groups do not. For example, cluster synchro-
nization occurs in human brain activity, assuming a brain
can be accurately represented by a non-linear coupled
oscillators model [Sadilek and Thurner, 2014]. Accord-
ing to the research provided in these articles, cluster syn-
chronization mainly emerges in systems with incomplete
connectivity between agents and due to external distur-
bances, which may affect connectivity and agent states.

In the phenomenon of clusterization, multiple syn-
chronous stable manifolds form (or exist in our models),
corresponding to separate clusters. We denote the num-
ber of such cluster manifolds m, and the following re-
lation between the number of agents N and number of

clusters m is often true:

N ≫ m≫ 1. (4)

Equation (4) motivates the need to study clusterization
phenomenon in complex systems for simple cluster con-
trol strategies development. In the current paper, we
study the ways of cluster synchronization application to
efficient system control strategy synthesis.

3 Macro-, Micro- and Meso-scale
Control Strategies

In the previous Section, different types of goals for ar-
tificial complex system control were described. It was
stated that both the specific type of a goal and the desired
terminal system state values are regulated by the nature
of the control input u. Current Section reveals possible
approaches to the control input synthesis, regardless of
the goal.

3.1 Open-loop vs Feedback Control
Amid the most simple yet straightforward ways to

model and implement control action u would be to con-
struct a corresponding function ui(t) for each agent i,
which only depends on time. For example, consider an
ordinary linear system [Kalman, 1960]

ẋi(t) = Aixi(t) +Biui(t), (5)

where Ai and Bi are some matrices of an appropriate di-
mensionality, and ui ̸≡ 0. By introducing such control
function u, we obtain a non-homogeneous system, the
state xi of which changes independently on any func-
tions of its current state, except the linear one. We further
call such control approach a program control or open-
loop strategy, to emphasize its independence on the sys-
tem state.

Frequently, in synchronization-type goals it is not
enough for the control input u to only depend on
time, like in Equation (5). As an example, local vot-
ing [Amelina, 2013] and Kuramoto oscillator mod-
els [Acebron et al., 2005; Sadilek and Thurner, 2014;
Benedetto et al., 2014; Chopra and Spong, 2006; Jad-
babaie et al., 2005] demonstrate interesting complex be-
havior, provided corresponding control actions appear in
relatively simple form due to the permission to use sys-
tem state for control synthesis. Therefore, in contrast
to the class of control inputs described above, we define
a feedback (thus emphasizing its dependence on state)
control strategy as a class of control functions ui(x, t),
which now also depend on a set of agent states x. This
set may contain the state vector xi and, for instance, state
vectors of its neighbors (agents, which affect the agent i).

Real world systems are often subject to various distur-
bances, which may render agent states inaccurate for fur-
ther feedback control. In [Proskurnikov and Granichin,
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2018; ?], a concept of an observation was thoroughly
discussed: basically, we assume that the precise agent
state values may be unavailable, while we can only rely
on a measurement procedure

yj(x(t), vi(t)), (6)

called an observation, with x(t) being a set of agent
states (over which the observation is performed), and vi
being the measurement error due to noise. Using this
procedure, one can synthesize a control input ui(y, t),
where y is a set of all necessary observations of the cor-
responding agents.

Accordingly, we distinguish three classes of control
strategies:

1. Open-loop control.
2. State feedback control.
3. Observation feedback control.

3.2 Optimal Control
Another classification scheme of control strategies can

be described in terms of the control action feasibil-
ity. Indeed, one is unable to apply infinite force to
instantly achieve the desired system state; such force
would always be limited by the abilities of the force
actor: |u(x, t)| < ∞. The same reasoning is true
for the system states |x(t)| < ∞ and observed out-
puts |y(x, t)| < ∞. Often, even stronger conditions on
such functions may be regarded: for example, in [Gal-
braith and Vinter, 2003; Hernandez and Garcia, 2014]
Lipschitz continuous control inputs are studied, where a
function x(t) is called Lipschitz continuous in case there
exists a constant K > 0 (so-called Lipschitz constant)
such that

|x(t1)− x(t2)| ≤ K|t1 − t2|

is true for all real t1 and t2 (or for all t1 and t2 on the
time interval under consideration). In other cases (e.g.
in optimal control as optimization in Hilbert space), it
might be required that x, y or u are bounded in Lp(0, T )
sense: ∫ T

0

|u(t)|pdt <∞

for u(t) as an example, where T > 0 is terminal time
(finite or infinite), up to which the system operates.

Recently, stability analysis and optimization tech-
niques for control synthesis are of the most interest.
The former seeks for such classes of control u, which
lead to stable system states (or for ways to check if a
given input u leads to stable system states) [Lyapunov,
1892; Jadbabaie et al., 2005]. At the same time, the
objective of the latter study is to find such u, which
would lead the system to a stable manifold at the fastest

rate [Kalman, 1960; Doyle, 1996; Le and Mendes,
2008]. Despite these two branches of complex system
control study were initially clearly separated, nowadays
they are closely related to each other. More than that,
they became significantly more popular recently due to
enough computational power available for numerical op-
timization methods, which are the only feasible solution
to optimization for systems of significant complexity, in-
tractable by analytical approaches.

In the situation of limited resources, we can generally
minimize one of the following values J(u) for optimal
control strategy synthesis.

1. Time consumption for convergence to the stable
manifold, provided the control input is bounded:

ũ1 = argmin
u

J1(u) = argmin
u

T (x, u), (7)

where T is total time consumption as a function of
systems state x and bounded control input u from a
set of strategies U.

2. Conversely, control input, expressing “expended ef-
forts”, given the time is fixed and limited:

ũ2 = argmin
u

J2(u) =

= argmin
u

∫ T

0

ϕ(x(t), u(x, t), t)dt,
(8)

where ϕ is some function of systems state x, control
input u and time t; minimization goes for u amid a
set of strategies U, a proper strategy should there-
fore be chosen for the integral of ϕ over t and with
respect to x(t) to reach its minimum.

We thus obtain two classes of control strategies, classi-
fied by optimality, further referred to as Equations (7)
and (8). As an example, recall the system (5).
In [Kalman, 1960] (for the number of agents N = 1),
control action u(x, t) = −Kx(t) called static-state feed-
back was shown to be optimal according to Equation (8).

In presence of noise, modifications to the optimization
functionals become needed. In [Granichin and Fomin,
1986; Jerray et al., 2021], “minimax” control strategies
are discussed, which first maximize the functional value
with respect to the unknown or noise parameters, prior
to minimization over the control inputs. In other words,
only worst-case scenarios are considered.

It is worth noting that in many complex system control
problems it is not possible to obtain an optimal control
strategy analytically. In these cases, iterative gradient
methods [Kelley, 1960; Polyak, 1964; Liang et al., 2020]
allow to find an optimal solution in the following form:

uk+1 = uk − γk∇kJ(uk),

where γk regulates the gradient descent speed.
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3.3 Control on Different Scales
We further consider only synchronization-inducing

and tracking control actions, as we deal with large-
scale multiagent complex systems. Due to the numerous
amount of possible computation steps required to syn-
thesize the desired optimal control strategies, we again
return to the basic concept of information and signal
compression. In [Proskurnikov and Granichin, 2018; ?;
Granichin et al., 2020b], first attempts to generalize the
theory of complex multiagent system control, which uti-
lizes clusterization, were proposed. It was shown how
clusterization could reduce the number of required con-
trol inputs by the relation between the number of agents
N and clusters m ≪ N . According to the results pro-
posed in these papers, we distinguish three scale classes:

1. Local (microscopic) control, different for each
agent.

2. Cluster (mesoscopic) control, different for all sepa-
rate clusters.

3. Global (macroscopic) control, equal for all agents.

We summarize possible scale classes by a scheme of the
corresponding observation feedback control model with
agent clusterization, see Figure 1.

macro

meso

micro

Feedback control

Observations

Figure 1. Observation feedback control for a multiagent complex
system with clusterization. A system is represented as a composi-
tion of interacting agents, defined by their states xi and connected
according to an adjacency matrix A with elements ai,j equal to 1 in
case a connection between agents i and j exists, otherwise equal to 0.
The system is affected by external disturbancesW , which may change
connectivity or agent states directly. Observations are exposed to noise
V and are divided into three levels: micro- (individual agents), macro-
(clusters) and mesoscopic (whole system). Provided the observations,
control is separated into three types of inputs: ui ls local control input
of an agent i, uα is a cluster control of a cluster α, and U is global
control action equal for all agents.

Cluster control is possible for some integral (aggre-
gated) cluster characteristics as separate cluster states,
where clusters are assumed as separate subsystems.
These characteristics can be obtained using, for exam-
ple,

1. Local voting [Amelina, 2013].

2. “External” (i.e. non-multiagent) cluster identifica-
tion methods, such as hierarchical clustering [Gior-
dani et al., 2020; Karna and Gibert, 2022] or
centroid-based clustering [Mughnyanti et al., 2020;
Singh, 2021].

3. Data compression techniques, e.g. compressed
sensing [Candès et al., 2006; Granichin et al.,
2020b].

3.4 Stability of Cluster Control
While cluster control may lead to efficient and straight-

forward results, it still deals with complex systems with
possibly unpredictable emergent behavior. This feature
requires to study stability of such systems under con-
trol inputs. We further treat system stability in terms of
cluster structure invariance, as in [Granichin and Uzhva,
2020]. An example of system analysis directed to invari-
ance preserving cluster control synthesis is shown on the
example of a non-linear model below.

We utilize a simple yet versatile nonlinear model pro-
posed by Yoshiki Kuramoto [Acebron et al., 2005]. It
describes oscillatory dynamics of coupled oscillators.
Given a network of N agents each having one degree
of freedom (often called a phase of an oscillator), its dy-
namics is described by the following system of differen-
tial equations:

θ̇i(t) = wi +

N∑
j=1

Kij sin (θj(t)− θi(t)) , (9)

where θi(t) is a phase of an agent i, Kij is a weighted
adjacency matrix of the network and wi is a natural fre-
quency. According to [Benedetto et al., 2014], [Chopra
and Spong, 2006] and [Jadbabaie et al., 2005], agents
approach the state of frequency (θ̇i = θ̇j ∀i, j ∈ 1, N )
or phase (θi = θj ∀i, j ∈ 1, N ) synchronization under
certain conditions on wi and Kij .

We propose an approach to treating the Kuramoto
model of coupled oscillators, which is quite peculiar for
cybernetics and control theory. Consider the model (9).
The coupling protocol is as follows:

ui(t) = wi +

N∑
j=1

Kij sin (θj(t)− θi(t)) , (10)

so that the corresponding communication outputs of the
agents are yi(t) = θi(t). It is assumed that K = {Kij}
is an adjacency matrix for a specific configuration of a
network of oscillators, i.e. Kij ̸= 0 ⇐⇒ j ∈ Ni ⇐⇒
∃(j → i) ∈ E(t); and θi(t) ∈ S1 ∀i ∀t ≥ 0. Synchro-
nization in the Kuramoto model can appear in the forms
of frequency or phase lock. The difference between them
is the choice of the output zi(t): zi(t) = θ̇i(t) and
zi(t) = θi(t) correspondingly. We only consider the
first case, since it is more general and has more practical
applications.
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Unlike many other works on the Kuramoto model, we
do not restrict ourselves to mean-field coupling Kij =
C
N ∀i, j, where C is some constant. Indeed, the real
physical world has more examples of networks with in-
complete (or even sparse) graph topologies, i.e. net-
works of neurons, flocks of birds or even sometimes
swarms of robots. More than that, the topology of the
graph G(t) corresponding to a certain multi-agent net-
work may change with time. With that in mind, we pro-
pose the following modification to the model (9):

θ̇i(t) = wi + ρ
∑

j∈Ni(t)

sin (θj(t)− θi(t)) , (11)

where ρ is a constant and i is only affected by the
agents from Ni(t). we denote an adjacency of G(t) by
Υij(t) ∈ {0, 1} ∀i, j ∀t ≥ 0, so that Kij(t) = ρΥij(t)
now becomes dependent on time. The value 0 can be in-
terpreted as “no connection from j to i (j /∈ Ni)” and 1
stands for “i is accessible to j (i ∈ Nj)”.

Since agents tend to synchronize using the sum in the
protocol of (11), we assume that ρ > 0. However, the
agents also drift with speeds wi ≥ 0, which are basically
their natural frequencies.

3.4.1 Mesoscopic Control We assume that there
exists some algorithm A that, given a multi-agent net-
work N , returns the corresponding clustering at any
given moment of time. Such algorithm, for example, can
be the new proposed compressed-sensing-based cluster-
ization method described in the next Section. Let clus-
teringM(t1) emerge at time t1 for the model (11) and
remain constant on interval T = [t1,+∞). Henceforth,
t ∈ T . Assume that topology of G(t), corresponding to
a given multi-agent network, also does not change on T .
Thus, Υij is also constant. We propose the following
modification to the original Kuramoto model, assuming
i ∈Mα:

θ̇i(t) = µiFα(t, xα(t))+

+wi + ρ

N∑
j=1

Υij sin (θj(t)− θi(t)) ,
(12)

where Fα(·) is a mesoscopic function in a sense it is
equal for the whole clusterMα, µi is (a constant) agent’s
sensibility to the control function Fα(·). If we compare
the model (12) with equation (2), it becomes clear how
the coupling protocol ui(t) and the mesoscopic control
input Ui(t) are separated:

ui(t) = wi + ρ

N∑
j=1

Υij sin (θj(t)− θi(t)) ,

Ui(t) = µiFα(t, xα).

(13)

Besides time t, an additional argument in Fα(·) is xα(t).
It stands for characteristics of the cluster α with physical
nature, i.e. a position of the cluster in space.

The control inputs (13) allows agents to synchronize
only if certain conditions are satisfied. As it was dis-
cussed for drift, cluster synchronization depends on the
values of µi: some agents in a clusterMα may react to
F(·) with much greater intensity, which may affect the
overall structure of the cluster.

In order to find conditions for the parameters in (12)
sufficient for cluster structure to remain invariant, we
firstly propose a theorem for the model (11) concerning
relations between the natural frequencies wi and values
Kij = ρΥij necessary for cluster synchronization.

Theorem 1. Consider a multi-agent network corre-
sponding to (11) and to some graph G with an adja-
cency matrix Υ. Let t ∈ T , output zi(t) = θ̇i(t)
and ∆ij(t) = |zi(t)− zj(t)|. The following condi-
tions are sufficient for this network to be output (0, 0)-
synchronized:

1. For i, j ∈Mα such that wj − wi ≥ 0

wj − wi ≤ ρ sin

(
∆θji
2

) N∑
l=1

[Υil +Υjl], (14)

where sin
(

∆θji
2

)
= 1 in case Υij = Υji = 0;

otherwise,

sin

(
∆θji
2

)
= max

{√
1− (Γi(j))2,

√
1− (Γj(i))2,

√
2

2

}
,

(15)

where

Γi(j) =
−di(j) +

√
(di(j))2 + 8(Υij +Υji)2

4(Υij +Υji)
.

(16)
2. For i ∈Mα, j ∈Mβ , α ̸= β

|wi − wj | > 0. (17)

3. Graph G is strongly connected.

The idea behind Theorem 1 is that if |wi − wj | is very
high, there may appear to be not enough strength of cou-
pling, so that ρ should be appropriately large to “over-
come” drift. In the simplest case, where wi = w ∀i, the
synchronization always appear ∀ρ > 0. We obtain that
|wi−wj | should be non-zero for agents i and j from dif-
ferent clusters for (0, 0)-synchronization to remain. The
proof for the Theorem 1 is proposed in [Granichin and
Uzhva, 2020].

Accordingly, the result can be generalized for the
model (12). We denote Fα = Fα(t, xα) for the sake
of notation simplicity.
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Theorem 2. (Stable cluster control for the Kuramoto
system). Consider a multi-agent network correspond-
ing to (12). Let t ∈ T , output zi(t) = θ̇i(t) and
∆ij(t) = |zi(t)− zj(t)|. Let also Fα does not depend
on θi ∀i. The following conditions are sufficient for this
network to be output (0, 0)-synchronized.

1. In case i, j ∈Mα,

|(µj − µi)Fα| ≤ 2ρ sin

(
∆θji
2

) N∑
l=1

[Υil +Υjl],

(18)
where ∆θji is as in Theorem 1 (including the case
Υij = Υji = 0).

2. For i ∈Mα, j ∈Mβ , α ̸= β

|wi−wj +µiFα(t, xα)−µjFβ(t, xβ)| > 0. (19)

3. Graph G is strongly connected.

Proof. The sufficient conditions can be derived from
Theorem 1 by substitution of the mesoscopic control Ui

in the ∆ij :

∆ij =

∣∣∣∣∣wi − wj + µiFα − µjFβ + ρ·

·

(
N∑
l=1

Υil sin(θl − θi)−
N∑
l=1

Υjl sin(θl − θj)

)∣∣∣∣∣.
(20)

First, we assume that i, j ∈ Mα. Following the same
reasoning as in the Proof for Theorem 1, equation (20)
is equal to 0, thus (18) can be easily derived. Now let
i ∈ Mα, j ∈ Mβ α ̸= β, thus ∆ij > 0 in equa-
tion (20). Setting the sines to zero as in Theorem 1, the
desired condition on the mesoscopic control can be eas-
ily derived, which concludes the proof.

4 Finding the Clustering Structure
This section will describe the approach of obtaining the

cluster structure of the entire system. This approach is
based on the compressed sensing methodology for com-
pact representation of the agent state and transmission
over the network. Compressed data is used in the cluster
evaluation process, that is, the data recovery stage is not
applied.

The goal of this approach is to reduce the computa-
tional costs of reconstructing the cluster structure and at
the same time eliminate centralization in data collection
and calculations. This will allow incomplete measure-
ments of the agent’s state to be processed, complement-
ing them with a consensus protocol.

4.1 Compressed Sensing
Assume that a sampled signal x ∈ RN is s-sparse in

some sparsifying basis (domain) Ψ ∈ RN×N , namely

x = Ψxs, (21)

where xs has, at most, s (s≪ N ) non-zero components.
We further call such vectors s-sparse. It means that the
comprehensive information is stored in only s units of
data out of N ; in other words, x has only s principal
components. We define an m×N(m≪ N) matrix A as
a measurement operator, transforming the initial sparse
signal from RN into Rm. Subsequently, the compressed
sensing can be described as:

y = Ax = AΨxs = Φxs, (22)

where Φ is an m × N(m ≪ N) sampling matrix. The
vector y ∈ Rm is called a measurement vector or a vec-
tor of compressed observations.

Since m ≪ N , the problem of x estimation by given
y is ill-conditioned. However, according to [Candes and
Romberg, 2005], reconstruction is feasible if the follow-
ing conditions for Φ called the Restricted Isometry Prop-
erty (RIP) are satisfied:

(1− δs)||xs||22 ≤ ||Φxs||22 ≤ (1 + δs)||xs||22, (23)

holding for all s-sparse vectors z for some δs between 0
and 1. Roughly speaking, matrix Φ should retain lengths
of sparse vectors.

Along with (23), another frequently used condition is
offered in [Candes et al., 2006], the Modified Restricted
Isometry Property (MRIP), which allows for x recon-
struction:

λ−1||xs||2 ≤ ||Φxs||2 ≤ λ||xs||2

for some 0 < λ <∞ and any non-zero vector xs with s
non-zero components.

According to [Candes et al., 2006], RIP can be satisfied
with high probability in case the elements of A are ran-
domly sampled according to one of the three following
distributions:

1. Gaussian distribution:

a[i, j] ∼ N
(
0,

1

m

)
.

2. Symmetrical Bernoulli distribution:

P (a[i, j] = ±1/
√
m) =

1

2
.

3. Three-element Bernoulli distribution:

a[i, j] =


+
√

3/m with the probability 1
6

0 with the probability 2
3

−
√

3/m with the probability 1
6 .
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By designing A as outlined above and according to
RIP (23),

m ≥ c1s log(N/s) (24)

at 0 < δ < 1. The relation (24) ensures the mea-
surement operator A would satisfy RIP with probability
≥ 1 − 2e−c2m, where c1 and c2 are small positive con-
stants depending only on δ. In [Baraniuk et al., 2008],
particular conditions for the selection of the constants
c1 and c2 are suggested. Under these conditions, A is
universal (for all three types of distributions used to gen-
erate its elements) in the sense that any s-sparse x can be
reconstructed for given y of an appropriate dimensional-
ity.

In general, an inverse problem concerning the direct
one (22) would have an infinite number of solutions.
With the sparsity-inspired constraints proposed in [Can-
des and Romberg, 2005; Donoho, 2006], unambiguous
signal reconstruction is feasible in a constrained setup:

min ||xs||ℓ0 s.t. ||Φxs − y||2 = 0,

where || · ||ℓ0 is the ℓ0 norm, which counts the num-
ber of non-zero elements and thus corresponds to the
sparsest solution. However, this problem is NP-hard,
and a linear relaxation via the ℓ1 norm provides a good
compromise between the sparsity and the computational
complexity [Candes and Romberg, 2005]. In [Granichin
and Uzhva, 2022], a comprehensive review of methods
to compute an optimized solution is provided. Briefly,
these methods vary from the classical iterative interior-
point algorithms (see [Nesterov and Todd, 1998]) to
more advanced deep learning techniques (e.g. [Zhang
et al., 2019]).

4.2 Randomized Compressed Measurements
Each agent has state xi ∈ Rd. Let x =

col(x1, . . . , xN ) ∈ RNd be the overall system state.
The compressed sensing adjusted to the corresponding
dimensions of x takes the form:

ȳ = Ax, A = A⊗ Id ∈ Rmd×Nd, (25)

where Id is the identity matrix, A is m × N(m ≪ N)
matrix A as a measurement operator, transforming the
initial sparse signal from RN into Rm.

We assume that each agent i ∈ N independently col-
lects private measurements as follows:

yi = Aixi, (26)

where yi ∈ Rmd is the compressed observation of
agent i, Ai = A(·,i) ∈ Rmd×d is a measurement op-
erator of agent i, A(·,i) represents the columns of matrix
A corresponding to i-th agent. Thus, we can obtain the
overall vector of measurements in the following way:

ȳ =
∑
i∈N

yi =
∑
i∈N

Aixi, (27)

where ȳ is a set of centroids, computed as weighted sums
of agent states with randomized weights.

4.3 Distributed Compressed Cluster Recovery
The following algorithm is proposed for recovering of

clusters from compressed measurements:

1. Train generative neural network F on simulated
dataset with the loss function:

L∑
l=1

∥∥∥F(Aȳ(l))− x(l)
∥∥∥2,

where L is the batch size, x(l) is an example from
training dataset, A is the sampling matrix.

2. Reconstruct x̂ by ȳ using pretrained model: x̂ =
F(ȳ), where x̂ is an estimate of x.

3. Fit Gaussian mixture model Γ with s components to
x̂.

4. compute the mean and covariance matrix for each
cluster using model Γ.

5. Identify agent’s cluster membership with the closest
center using nearest neighbour algorithm.

Obtaining a vector ȳ in a distributed way is a place
for variation in the application of methods. This article
discusses one of them, this is the method of local voting
protocol (LVP) [Amelina et al., 2015].

The simple experiment is conducted to to verify the
performance of the algorithm for simulated states of
agents. The architecture of the generative network is de-
picted on Fig. 3. It is fitted to simulated data with five
clusters.

We show the result of an experiment on the Fig. 2 to
demonstrate accuracy of the algorithm for clusters recov-
ery.

Figure 2. Example of clusters recovery
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Figure 3. Architecture of the generative model for reconstruction of
the state vector of agents. FC is fully connected (linear) layer, ReLU is
nonlinear activation function.

5 Distributed Data Aggregation Protocol
In this section, we present a communication protocol

suitable for data aggregation in networks. Our goal is to
design a protocol tolerant to network unreliability during
the aggregation. These unreliability factors include:

• communication failures due to time-varying topol-
ogy;

• presence of communication noise and delays;
• limited bandwidth of communication channels.

First, we provide a network model that we use and state
the required assumptions. Next, we describe the pro-
posed protocol and its properties.

5.1 Network Model
Given a network consisting of n agents. Let communi-

cation between agents be described by the directed graph
G = (N , E), where N = {1, . . . , n} is a set of vertices
and E ⊆ N ×N is a set of edges. A subgraph of G is a
graph Ḡ = (NḠ , EḠ), where NḠ ⊆ N and EḠ ⊆ E . De-
note by i ∈ N an identifier of i-th agent and (j, i) ∈ E if
there is a directed edge from agent j to agent i. The lat-
ter means that agent j is able to transmit data to agent i.
For an agent i ∈ N , the set of neighbors is defined as
N i = {j ∈ N : (j, i) ∈ E}. Here, the identifier of i-th
agent is used as a superscript and not as an exponent.

Let ci,j > 0 be the weight associated with the edge
(j, i) ∈ E and ci,j = 0 whenever (j, i) /∈ E . Let
C = [ci,j ] be the weighted adjacency matrix, or sim-
ply connectivity matrix. Denote by GC = (NC , EC) the
weighted directed graph, where NC ≡ N and EC ≡ E .
We assume that weight ci,j is the cost of data transmis-
sion through the edge (j, i) ∈ EC . The weighted in-

degree of i ∈ NC is defined as deg+i (C) =
∑n

j=1 c
i,j ,

the maximum in-degree among all nodes contained in
the graph GC as deg+max(C).

The above-mentioned unreliability factor related to
limited bandwidth can be associated with the cost of data
transmission in the network and characterized by ma-
trix C. As in [Granichin et al., 2020a], we represent
cost constraints of agent i ∈ N as a predefined upper
bound Q: deg+i (C) ≤ Q. Thus, the total bandwidth of
the network is adaptively adjusted in terms of the total
cost of communication with neighbors of agent i. To sat-
isfy these constraints, we may generate at each time in-
stant t subgraph GBt

⊂ GC associated with the weighted
connectivity matrix Bt such that deg+i (Bt) ≤ Q. One
way of doing this is to use a randomized topology simi-
lar to the scheme used in gossip algorithms [Boyd et al.,
2006].

Next, we consider a data aggregation protocol satisfy-
ing the predefined averaged cost constraints: Definition.
[Granichin et al., 2020a] Random subgraph GBt satis-
fies the averaged cost constraints with level Q if

E deg+max(Bt) ≤ Q. (28)

5.2 Data Aggregation Protocol Based on LVP
During each time interval [t; t+1], the agents perform

K communication rounds. We assume that at commu-
nication round k agents are able to communicate with
their neighbors through the network defined by graph
GBk

= (NBk
, EBk

). Also, the corresponding connec-
tivity matrix Bk satisfies some averaged cost constraints
(28) with level Q.

If setN i
k = {j ∈ NBk

: (j, i) ∈ EBk
} is not empty, the

agent receives measurements transmitted by its neigh-
bors through noisy communication channels

ȳi,j
k = ȳj

k−di,j
k

+wi,j
k , j ∈ N i

k, (29)

where wi,j
k is communication noise, 0 ≤ di,jk ≤ d̄ are

integer-valued delays, and d̄ is a maximum possible de-
lay. If j ̸∈ N i

k we set ȳi,j
k = 0.

After all, we apply local voting protocol and derive
data aggregation protocol:

ȳi
0 = yi,

ȳi
k+1 = ȳi

k + γ
∑
j∈N i

k

bi,jk (ȳi
k − ȳi,j

k ), k = 1, . . . ,K,

(30)
where γ > 0 is a consensus step-size. Here we assume
that the protocol requires the amount of time that is much
smaller then each time interval [t; t + 1]. In [Amelina
et al., 2015], it is showed that ȳi

k converges to ȳ un-
der noised and delayed measurements if graph GBav

is
strongly connected, where Bav = [bi,jav ], Eb

i,j
t = bi,jav .

Therefore ȳi
K ≈ ȳ.
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6 A New Method of Adaptive Mesoscale Control
We summarize the proposed cluster control theory in

this Section by manifesting a complete control algorithm
for multiagent group steering toward a pre-defined goal.
Each agent is assumed to perform its own compressed
measurements using the compressed sensing methodol-
ogy regarding its neighboring agents, forming a local
sub-system. The whole network can therefore efficiently
estimate its high-dimensional state in a distributed man-
ner with the local voting protocol and perform intelli-
gent decisions due to emergent complex behavior led by
numerous local communications and corresponding dy-
namics. Correspondingly, we combine these steps in the
Algorithm 1, which describes the control pipeline.

Algorithm 1 Adaptive mesoscale control method
Require: measurement matrix A ∈ Rmd×Nd, consen-

sus step-size γ > 0, cost constraint Q
1: for each i ∈ N during time interval [t; t+ 1] do
2: obtain private measurement

yi = Aixi

3: k ← 1
4: set initial value ȳi

0 = yi

5: while k ̸= K do
6: randomly define set of neighbors N i

k to sat-
isfy cost constraint Q

7: collect measurements of neighbors ȳi,j
k , j ∈

N i
k, taking form (29)

8: apply local voting protocol

ȳi
k+1 = ȳi

k + γ
∑
j∈N i

k

bi,jk (ȳi
k − ȳi,j

k )

9: k ← k + 1
10: end while
11: set ȳ = ȳi

K

12: reconstruct x̂t by ȳ using pretrained model: x̂ =
F(ȳ), where x̂t is an estimate of xt

13: fit Gaussian mixture model Γ with s components
to x̂t

14: compute the mean and covariance matrix for
each cluster using model Γ

15: identify agent’s cluster membership with the
closest center using nearest neighbour algorithm

16: apply control input ū to the identified cluster
17: end for

We refer to the system control scheme illustrated in
Figure 1 and modify it according to the proposed algo-
rithm. The new scheme is shown in Figure 4.

system
CS

measurements

neighborhood

LVP
estimates

distributed
cluster

identification

Feedback cluster control

Figure 4. Observation feedback cluster control for a multiagent com-
plex system with clusterization according to the new proposed Algo-
rithm 1.

7 A Universal Plug-in Module for Evaluating the
Aggregated Characteristics of the System

In order to perform distributed data aggregation and
subsequent adaptive meso-scale control, we develop
a universal embedded hardware and software module.
This module extends the functionality of mobile robots
of various types, sizes and types of portable equipment.
Such a complex is a high-performance microcomputer
based on a Russian-made TRIK board with support for
various sensors and various autopilots. On such a micro-
computer, the real-time operating system Embox OS is
installed, developed at the Department of Software En-
gineering of St. Petersburg State University. The com-
plex is designed to quickly increase the functionality of
a mobile robot without changing the ”native” software
for the autopilot and maintaining the reliability of its op-
eration. The main functions of the complex are orga-
nization of decentralized group interaction, work with
additional devices (camera, thermal imager, rangefinder,
etc.), autonomous adjustment of robot control parame-
ters in conditions of uncertainty. It is also possible to
expand the functionality of the complex, for example,
by introducing optimization algorithms, pattern recogni-
tion algorithms, etc. When solving a large class of tasks
to optimize and manage the aggregated characteristics
of the entire group of robots (load balancing, goal allo-
cation, territory coverage, etc.) to ensure decentralized
interaction, we propose to abandon the traditional rout-
ing of data in the network and use a locally generated
aggregated assessment of the state of the entire system
as a whole on each robot, calculated from its own data
and data from the nearest neighbors. To synchronize the
evaluation between all robots, we use the local voting
protocol and multi-agent system technologies.

The final goal is to develop a universal module em-
bedded in the robot that will be easily integrated into the
control system of a mobile robot, interact with autopilots
of various manufacturers, increase functionality (work in
a decentralized group, support for various sensors, work
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with additional devices) and robot performance (imple-
mentation of algorithms for optimizing drone flight, pat-
tern recognition, support for autonomy, etc.). Due to
the fact that the module will naturally integrate into the
robot’s architecture and work with the autopilot in its
usual mode, namely, sending new flight coordinates and
the type of task to the autopilot, the autopilot will not be
loaded with new software and functionality, and there-
fore, the level of reliability of the autopilot will remain.
Such a system will allow you to freely embed various
equipment and new algorithms for working with actua-
tors and sensors without changing the autopilot software.
The main technical parameters of the proposed solution
are described below. The proposed hardware and soft-
ware complex should support various autopilots and con-
trol microcomputers existing on the market.

Thus, the developed complex should have the follow-
ing technical parameters for hardware and software:

• work with autopilots via FTDI, USB or COM di-
rectly;

• work with protocols of various autopilots. One of
the most common channels for communication with
autopilot at the moment is MAVLink;

• support for USB 3.0+ devices (at least 2 pcs.);
• work with various means of wireless communi-

cation: Bluetooth, Xbee (Zigbee), Wi-Fi, GSM
(GPRS);

• work with various types of additional equipment –
camera, thermal imager, additional telemetry sen-
sors, etc.;

• work with various types of batteries (components
of the complex, which include means of protection,
preservation of the battery, as well as a built-in inte-
grated stabilizer);

• work with actuators by PWM signal;
• work in group interaction mode with support for

new decentralized data exchange protocols (without
a single decision-making center).

8 Simulation
To evaluate the effectiveness of control algorithms, a

simulation was implemented and a comparison of the al-
gorithms was carried out.

8.1 Simulation details
To make a comparison, a world was developed in

which agents exist, the laws of this world, and a task
was set for agents that they must complete.

• The world consists of identical regular hexagons
that create an endless plane.

• In the world, time passes discretely.
• On one cell of hexagons there can be only one agent

at a time.
• The task of the agents is to reach a certain cell on

the plane – target.

• Each agent can communicate with other agents by
sending messages.

• Agents can move to adjacent cells to their location.
• The distance between two cells is entered as the

minimum number of steps an agent must take to
move from one cell to another.

• For each time step, an agent can exchange messages
with other agents and make moves.

• Penalty steps are applied to agents for not fulfilling
the rule of having only one agent on one cell.

• Agents cannot move during penalty steps.

8.2 Controls for comparison
For an objective assessment of the proposed control al-

gorithm, a comparison is made with micro- and macro-
control algorithms. The results of comparisons of such
algorithms make it possible to carry out analogies for a
wide range of algorithms for control a group of agents.

• With micro-control, each agent independently cal-
culates the path to the target, not taking into account
other agents. This can lead to collisions of agents,
when several agents want to be on the same cell, or
raids of agents on another agent - one agent is al-
ready on the cell that the neighbors want to get into.
In the event of a collision of agents, each of them re-
ceives ten penalty steps and remain in place, in the
event of a collision, the agents who wanted to hit
them receive penalty steps. To avoid repetition of
collisions, agents make a random movement after
the end of penalty steps.

• With macro-control, agents calculate the center of
mass of the entire group, for this the local voting
protocol is used. Then calculate the trajectory from
the center to the target. The movement of each agent
is defined as follows: a trajectory for the movement
of the center is taken and applied to the location of
the agent.

• With meso-control, agents determine clusters and
their membership in them, while one agent can be
in only one cluster at a time. Then, the optimal
positions of the end points of the clusters and the
optimal paths to them from the initial position are
determined. After that, for each cluster, the macro-
control algorithm is executed, while each cluster
may have its own goal, which differs from the target
of the entire group.

The use of macro- and meso-control algorithms makes
it possible to avoid collisions of agents.

8.3 Research Questions
• RQ1 Which control will give the best dynamics of

task execution?
• RQ2 What accuracy will each of the controls give?
• RQ3 The end result of which control will be better?
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Figure 7. Meso-control

Figure 8. Macro-control

8.4 Metrics
Let’s introduce metrics that will allow us to evaluate

the efficiency and success of the task execution by a
group of agents.

• The group diameter is entered as the maximum dis-
tance between a pair of agents.

• The accuracy of the group is introduced as the sum
of the accuracy values of all agents. The agent’s
accuracy, in turn, is the distance from the agent’s
location to the target.

8.5 Results
In the experiments, the number of agents was 10 on

a 24 by 24 plane for each control. According to their
results, graphs are illustrated and animated pictures are
built.

Figure 5. Diameter and accuracy measurements for 10 agents

Figure 6. Micro-control

Figures 5-8 demonstrate that meso-control gives the
best dynamics of achieving results in terms of the com-
bination of two metrics.

8.5.1 RQ1 As can be seen from the graphs, the best
dynamics in the execution of the task is provided by
macro-control and meso-control algorithms. In this case,
the end result of macro-control is worse.

8.5.2 RQ2 According to the results, micro-control
and meso-control algorithms have the best accuracy.
However, meso-control algorithms achieve the best ac-
curacy much faster.

8.5.3 RQ3 The micro-control algorithm slightly
outperforms the meso-control algorithm. Also, the
macro-control algorithm significantly loses to both.
However, the micro-control strategy reaches consensus
in an unstable way and requires more time.
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8.6 The discussion of the results
For a better understanding of the experimental results,

let us scale them.
First, imagine that there are not 10 agents, but several

thousand. In this case, the micro-control algorithm will
further stretch the entire group, and also exponentially
increase the number of collisions. All this will lead to a
serious deterioration in the achievement of the target.

In the case of macro- and meso-control, the result will
remain the same, except that the number of casters will
increase. But at the same time, the meso-control algo-
rithm will give.

Therefore, we can conclude that the meso-control al-
gorithm will give the best result with an increase in the
number of agents.

9 Conclusions
In this paper, we have described a new approach to

complex system control based on efficient cluster (meso-
scopic) control paradigm. A novel framework for com-
plex multiagent system analysis aims to utilize system
sparsity for cluster control synthesis. Also, with the
help of the compressed sensing methodology, we have
developed a new distributed cluster control algorithm.
By receiving sparse system features in a latent space,
we have shown how these features can be exploited to
synthesize efficient control action. Finally, we have pro-
posed a universal hardware module for evaluation of ag-
gregated cluster characteristics. Our simulations show
that the new adaptive meso-scale control method outper-
forms other strategies chosen for the comparison.
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