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Oleg N. GranichinSaint Petersburg State UniversityDepartment of Mathematicsand MechanicsUniversitetsky pr. 28,198504 Saint PetersburgRussiaoleg_granichin@mail.ruAbstract: Accuracy for main class of Simultaneous Perturbation Stochastic Approximation (SPSA) procedures isbeing researched. The model of observation is considered to be one of the most general among SPSA research. Thepower of moments of expectation for which the estimates of the procedure do converge is lowerized from 2 to 1 (notincluding lower bound). The conditions for the convergence are presented, with additional generalisations madeabout noise and trial perturbation properties.Key�Words: Stochastic systems, Nonlinear control, Learning control, Intelligent control1 IntroductionThe interest to complex systems with di�erent kinds ofuncertainties leads to non-classical methods of systemidenti�cation and control. So called stochastic controlis highly discussed in contemporary science. Di�erentapproaches to model systems with uncertainties do ex-ist, each usually leading to separate class of methodsof control. In this paper simultaneous perturbationstochastic approximation (SPSA) group of methods isdiscussed, and the set of tasks for which these methodsare applicable is made wider.Firstly we describe some typical closed-loopdiscrete-time system. In these terms the task typicallysolved by SPSA can be easily formulated. So, the sys-tem consists of object and controller. Uncertainty isbeing expressed by wk and vk sequences, �rst is aboutinternal system undeterminism of behaviour, second isexternal noise which is added to the true object outputduring measurement or transfer of this discrete signalthrough some noisy channel.Following [6], we can divide optimization problemstatement to o�ine, stochastic and online classes. Of-�ine statement is classical. The approach consideredhere is stochastic, where there is one function F (x,w)being optimized, but it is measurable with noise. On-line statement of optimization problem is new and in-teresting. It assumes that on each iteration new func-tion is measured, but the cost function is formulateddepending on all the functions, for example we needto �nd point closest in average to minimum of all thefunctions [6].We continue investigations started in [3, 4] describ-

ing the types of convergence for the SPSA procedures.The convergence of E{‖θ − θ̂n‖
ρ} for ρ ∈ (1, 2] (mo-ments of estimates of degree ρ) is being researched.Conditions from [7] are taken as su�cient for SPSAin general. Additional assumptions of existence of ρ-moment of F (x,w), and some complex condition((E)in Section 2) on vn and ∆n should be satis�ed for theresults of the paper.We try to develop SPSA algorithms theoreticalframework in the very general form. Instead of as-sumption of triple-di�erentiable F as it is in [8], weconsider only one-time di�erentiable F . Also, the si-multaneous perturbation vector should be of the form

Kn(∆n) where ∆n is Bernoulli random vector and Knis vector-function (kernel) with some condition on itinstead os straight usage of Bernoulli random variablesin [8]. The model with two kinds of uncertainty is alsomore general than preseted in [8] and [9], and we be-lieve that SPSA technique becomes more useful withthese generalisations.In [3] this convergence was proved for SPSA proce-dure with one measurement. Using the same approach,in [4] convergence for two-measurement per iterationis proved. Here we present these results together withanother procedure of this class convergence result, de-liver common framework for such methods and addsome generalisations, discussed in [7] but not providedin [3, 4]



2 Problem statement and SPSA algo-ritmsLet F (x,w) : R
q ×R

p → R
1 � be di�erentiable bythe �rst argument function, x1, x2, . . . � is chosen byauthor of experiment sequence of points for measure-ment (plan of experiment), in which at every moment

n = 1, 2, . . . value of a function F (·, wn) is availablewith additive disturbances vn.
yn = F (xn, wn) + vn, (1)where {wn} � uncontrolable sequrnce of random val-ues from R

p, having equal, but unknown distribution
Pw(·).Problem. It is needed to construct using observa-tions y1, y2, . . . a sequence of estimates {θ̂n} of un-known vector θ, minimizing a function

f(x) = Ew{F (x,w)} =

∫

Rp

F (x,w)Pw(dw)of average cost functional type.Usually the problem of minimization of function
f(·) with simpler model of observations is discussed:

yn = f(xn) + vn, (2)which easily suits to the proposed scheme. More com-plicated model
yn = wnf(xn) + vn, (3)which suits the general model with F (x,w) = wf(x),was earlier investigated in [10].When distribution Pw(·) is unknown, the problemdiscussed is outside the scope of classical optimizationtheory.If measurements of function F (xn, wn) are done infact with some additive random centered independentnoise vn ∈ R, then this extra complexity us not prin-cipal. Adding to vector w additional component v anddenoting
w̄ =

(
w

v

)
,it is possible to use instead of F (x,w) another function

F̄ (x, w̄) = F (x,w) + vwith observation scheme without additional distur-bances and new common unknown distribution Pw,v(·)instead Pw(·), which was unknown before. If noiseadded by measurement doesn't have good statisticalproperties, then it is impossible to simplify the prob-lem. It is needed to use a model with additional dis-turbances vn.

Let us denote simultaneous perturbation as
∆n ∈ R

q; {αn} and {βn} are sequences of positivenumbers, tending to zero; θ̂0 ∈ R
q is a �xed initialvector. To construct the sequnces of points for mea-surements {xn} and estimates {θ̂n} three algorithmsare proposed. First uses one observation to build anestimate:





xn = θ̂n−1 + βn∆n, yn = F (xn, wn) + vn ,

θ̂n = θ̂n−1 −
αn

βn

Kn(∆n)yn,

(4)second and third use 2 observations on each iteration:




x2n = θ̂n−1 + βn∆n, x2n−1 = θ̂n−1 − βn∆n,

θ̂n = θ̂n−1 −
αn

2βn

Kn(∆n)(y2n − y2n−1),

(5)




x2n = θ̂n−1 + βn∆n, x2n−1 = θ̂n−1,

θ̂n = θ̂n−1 −
αn

βn

Kn(∆n)(y2n − y2n−1).

(6)In all three algorithms some vector-functions (ker-nels) are used: Kn(·) : R
q → R

q, which satisfy togetherwith distributions of simultaneous perturbation Pn(·)the conditions:
∫

Kn(x)Pn(dx) = 0,

∫
Kn(x)xTPn(dx) = I, (7)where I is a q-dimensional unit matrix.Algorithm (4) with function Kn(∆n) = ∆n wasprimary founded by O. N. Granichin in the paper [11]for constructing a sequence of estimates, well-foundedin almost arbitrary noise in observations. B. T. Polyakand A. B. Tsybakov investigated in [12] both algo-rithms (4) and (5) with vector-function Kn(·) of gen-eral form in situation of uniform testing perturbationand with assumption about independency and central-isation of observation noise. J. Spall [13] used algo-rithm (5) in case of distribution of trial perturbationwith �nite inverse moments and vector-function Kn(·),de�ned by rule:

Kn(∆n) =




1

∆
(1)
n

1

∆
(2)
n...
1

∆
(q)
n



.With same vector-funcrtion Kn(·) and constraintson distribution of trial simultaneous perturbation H.-F. Chen and others in paper [14] was proposed to usealgorithm(6).



We will use instead of algorithm (4) slightly di�er-ent one with projection when we formulate the mainresult:




xn = θ̂n−1 + βn∆n, yn = F (xn, wn) + vn ,

θ̂n = PΘn
(θ̂n−1 −

αn

βn

Kn(∆n)yn),

(8)for which it is more comfortable to prove. In thisalgorithm PΘn
(·) are projecting operators on someconvex closed bounded subsets Θn ⊂ R

q, which con-tain, starting from some n ≥ 1, the answer point θ. Ifthe bounded closed convex set Θ: θ ∈ Θ is known, thenwe can decide that Θn = Θ. In other case sets {Θn}can be wider each time up to in�nity. Some speci�csof the task can allow to construct decreasing sequence
{Θn}.3 Main conditionsConsider ρ ∈ (1, 2]. We will use following notation:
E{·} � for expectation; ‖ · ‖, ‖ · ‖ρ and (·, ·) � for Eu-clidean norm, norm in lρ space and scalar product in
R

q; Fn−1 � is for σ-algebra of probabilistic events, de-rived from random values θ̂0, θ̂1, . . . , θ̂n−1, constructedby algorithm (5) (or (6), or (8)); using algorithms (5)or (6)̄
wn =

(
w2n

w2n−1

)
, v̄n = κ(v2n − v2n−1),

κ =

{
1
2 , for (5),

1, for (6),

Fw = max
x∈Rq

Ew′{Ew′′{κρ|F (x,w′) − F (x,w′′)|ρ}},and when constructing estimates by algorithm (8)
v̄n = vn, w̄n = wn, Fw = Ew{|F (θ, w)|ρ}.Consider a function

V (x) = ‖x− θ‖ρ
ρ =

∑q

i=1 |x
(i) − θ(i)|ρ,where θ � is an optimal vector which we need to �nd.Let's formulate main assumptions.(A) Function f(x) has a unique minimum and

(∇V (x),∇f(x)) ≥ µV (x), ∀x ∈ R
qwith some constant µ > 0.(B) ∀w gradients of functions F (·, w) satisfy the con-dition

‖∇xF (x,w)−∇xF (y, w)‖ρ ≤M‖x−y‖ρ, ∀x, y ∈ R
qwith some constant M > 0.

(C) Local condition of Lebesgue for ∇xF (x, ·) : ∀x ∃neighbourhood Ux : ∀x′ ∈ Ux ∃ function Φx(·) :

R
p → R, Ew{Φx(w)} <∞ :

|∇xF (x′, w)| ≤ Φx(w) for almost all w.(D) For Kn(·) è Pn(·), n = 1, 2, . . . conditions aresatis�ed:
K̄ = Fw sup

n=1,2,...

∫
‖Kn(x)‖ρ

ρPn(dx) <∞,

K̃ = sup
n=1,2,...

∫
‖Kn(x)‖ρ‖x‖ρ‖x‖ ρ

ρ−1
Pn(dx) <∞.(E) For every n ≥ 1

ξn = ‖E{Kn(∆n)v̄n|Fn−1}‖
ρ
ρ ≤ C∆vβ

2
n,

E{‖Kn(∆n)v̄n‖
ρ
ρ} ≤ σρ

n.In case of ρ = 2 conditions (A) and (B) have thesame form as it was in earlier papers (for example,[10]):(A') � function f(·) is strictly convex, that is
〈x − θ,∇f(x)〉 ≥ µ‖x− θ‖2, ∀x ∈ R

q.(B')� Lipschitz condition for gradients of functions
F (·, w): ∀x, θ ∈ R

q

‖∇xF (x,w) −∇xF (y, w)‖ ≤M‖x− θ‖.4 Convergence of the sequence of esti-matesDenote:
νn = 2ραρ

nβ
−ρ
n ,

γn = αnρµ− αn(βnc(ρ− 1) + δnM
ρ)

φn = αnβnc+ 2ρ−1K̄νn + χn, c = MK̃ + C∆v,

χn =

{
21−ρηn + ψn, for(5), (6)

ηn + 21−ρψn, for(8)

K(x) = 23ρ−2

{
‖x‖ρ

ρ

ρ−1
for(5), (6)

(diam(Θn)
βn

+ ‖x‖ ρ

ρ−1
)ρ, for(8)

ψn = αnδnEw{‖∇xF (θ, w)‖ρ
ρ},

δn = αρ−1
n ρ

∫
‖Kn(x)‖ρ

ρK(x)Pn(dx),
ηn = ραρ

nβ
ρ
nM

ρ
∫
‖Kn(x)‖ρ

ρ‖x‖
ρ
ρK(x)Pn(dx),

diam(·) � Euclidean diameter of a set in metrics l ρ

ρ−1
.T h e o r e m 1 . Let be ρ ∈ (1, 2] and the con-ditions are satis�ed:(A�C); (7); random values {v̄k, w̄k,∆k}

n−1
k=1 do not de-pend on w̄n è ∆n, and random vector wn does notdepend on ∆n;



∀n, 0 ≤ γn ≤ 1,
∑

n γn = ∞, µn → 0 with n → ∞,where
µn =

φn + νnσ
ρ
n

γn

, zn =

(
1 −

µn+1

µn

)
1

γn+1
.Then: 1) sequence of estimates {θ̂n}, given by algo-rithm (8) (or (5), or (6)), converges to a point θ infollowing sense: E{V (θ̂n)} → 0 when n→ ∞;2) if limn→∞ zn ≥ z > 1, then E{V (θ̂n)} =

O
(∏n−1

i=0 (1 − γi)
);3) if zn ≥ z > 1 ∀n, then E{V (θ̂n)} ≤ (E{V (θ̂0)} +

µ0

z−1 )
∏n−1

i=0 (1 − γi);4) if, moreover, ∑
n φn + νnE{‖Kn(∆n)v̄n‖

ρ
ρ|Fn−1} <

∞ a. s.,then θ̂n → θ while n→ ∞ a. s. and
P{∀n ≥ n0 V (θ̂n) ≤ ε} ≥

≥ 1 −
E{V (θ̂n0)} +

∑
∞

n=n0
φn + νnσ

ρ
n

ε
.Proof of the theorem 1 can be found in the lastsection.Note 1. For function F (x,w) = wf(x) conditions(A)�(C) of the theorem 1 are satis�ed, if function f(x)satis�es the conditions (A) è (B).Note 2. In [3, 4] are formulated close results aboutaccuracy of estimation and speed of convergence ofalgorithms (8) and (5).Note 3. The problem of estimation of parametersin linear regression model with observations (3) when

θn = θ corresponds to minimization of a functional ofaverage risk
f(x) =

1

2
(x− θ)T(x− θ).Note 4. In the theorem 1 noise vn in observationscan be called almost arbitrary, because it may be notrandom (determined), but unknown and bounded, orbe a realisation of some stochastic process with arbi-trary structure of dependencies. In particular, for prov-ing the the statements of the theorem 1 there is noneed to assume anything about dependencies between

v̄n and Fn−1.Note 5. Although algorithms (5) and (6) seem tobe similar,in case of arbitrary noise in observations theuse of the second in real time systems is better. Foralgorithm (5) satisfaction of the condition about inde-pendency of the noise v2n from trial perturbation ∆nis quite strict, because at the moment 2n − 1 vector
∆n has been already used in the system. Using the al-gorithm (6) noise v2n and vector of trial perturbation
∆n enter the system simultaneously, what allows tohope on their independency.

Note 6. For another generalisation of conditionsof convergence for the algorithms (5), (6) and (8) se-quences {αn} and {βn} can be random, measurablerelatively σ-algebra Fn . Practical need in such dener-alisation appear, for instance, when, in parallel withcomputation of estimates by SPSA algorithm addi-tional conditions of the task give information aboutthe quality of estimation. If estimates are �bad�, thenit is possible to make the speed of convergence of se-quence {αn} to zero lower, maybe make the values ofthe sequence bigger for a while.5 Proof of the Theorem 1We denote for the algorithm (8): ȳn = yn, for (5): ȳn =
(y2n − y2n−1)/2, for (6): ȳn = y2n − y2n−1.For estimates of the algorithm (8) applying theprojector properties we get V (θ̂n) = V (PΘn

(θ̂n−1 −
αn

βn
Kn(∆n)ȳn)) ≤ V (θ̂n−1−

αn

βn
Kn(∆n)ȳn). For other algo-rithms' estimates we get equality. Using properties of cho-sen function V (x), from middle-value theorem with some

t ∈ (0, 1) we sequentially derive:
V (θ̂n) ≤ V (θ̂n−1) −

αn

βn
(∇V (θ̂mid),Kn(∆n)ȳn) =

V (θ̂n−1) −
αn

βn
(∇V (θ̂n−1 − t

αn

βn
Kn(∆n)yn),

Kn(∆n)ȳn) = V (θ̂n−1) − ρ
αn

βn

q∑

i=1

∣∣∣∣θ̂
(i)
n−1 − θ(i)−

−t
αn

βn
Kn(∆n)(i)ȳn

∣∣∣∣
ρ−1

sign(i)
n (t)Kn(∆n)(i)ȳn,where sign(i)

n (t) = 0 or ±1 depending on the sign of expres-sion θ̂
(i)
n−1 − θ(i) − tαn

βn
Kn(∆n)(i)ȳn. Denote s̃ign

(i)

n−1 = 0 or
±1 depending on the sign of θ̂

(i)
n−1 − θ(i). Next, using theinequality

−sign(c − d)|c − d|ρ−1b ≤ −sign(c)|c|ρ−1b + 22−ρ|d|ρ−1|b|for all b, c, d ∈ R, we get:
V (θ̂n) ≤ V (θ̂n−1) − ρ

αn

βn

q∑

i=1

∣∣∣∣θ̂
(i)
n−1 − θ(i)

∣∣∣∣
ρ−1

·

·s̃ign
(i)

n−1Kn(∆n)(i)ȳn + 22−ρρ
αn

βn
·

·

q∑

i=1

∣∣∣∣t
αn

βn
Kn(∆n)(i)ȳn

∣∣∣∣
ρ−1

|Kn(∆n)(i)ȳn| ≤

≤ V (θ̂n−1) −
αn

βn

q∑

i=1

∇V (θ̂n−1)
(i)Kn(∆n)(i)ȳn+

+22−ρρ

(
αn

βn

)ρ q∑

i=1

|Kn(∆n)(i)ȳn|
ρ.Consequently, we get:

V (θ̂n) ≤ V (θ̂n−1) −
αn

βn
(∇V (θ̂n−1),Kn(∆n)ȳn)+

+22−ρνn‖Kn(∆n)ȳn‖
ρ
ρ. (9)



From the model of observations (1), concideringmiddle-value theorem for the function F (·, wn), we derivewith some t′, t′′ ∈ (0, 1) next formula:
ȳn = F̄n(0, 0) + F̄ ′

n(t′, t′′) + v̄n,where for algorithms (8), (5) and (6) we denote:
F̄n(t′, t′′) =





F (θ̂n−1 + t′βn∆n, wn), (8)
1
2
(F (θ̂n−1 + t′βn∆n, w2n)−

− F (θ̂n−1 − t′′βn∆n, w2n−1)), (5)

F (θ̂n−1 + t′βn∆n, w2n)−

− F (θ̂n−1, w2n−1), (6)and
F̄ ′

n(t′, t′′) =
∂F̄n(t′, t′′)

∂t′
+

∂F̄n(t′, t′′)

∂t′′
.Let's use expectation operation relatively σ-algebra

Fn−1.From independence Kn(∆n) from w̄n and symmetry ofdistribution Pn(·) (condition (7)) we get
E{Kn(∆n)F̄n(0, 0)|Fn−1} = 0.Consequently, for conditional expectation of second termin formula (9) we sequentially get

−
αn

βn
E{(∇V (θ̂n−1),Kn(∆n)ȳn)|Fn−1} ≤

≤ −
αn

βn
(∇V (θ̂n−1), E{Kn(∆n)F̄ ′

n(t′, t′′)|Fn−1})+ (10)
+

αn

βn
|(∇V (θ̂n−1), E{Kn(∆n)v̄n|Fn−1})|.Using H�older inequality [19] (p. 129), Jensen [19](p. 210), Yung [20] (p. 280): a1/rb1/s ≤ 1

r
a + 1

s
b, r > 1,

a, b > 0, 1
r

+ 1
s

= 1, and condition (E), for the last term weget an upper bound
αn

βn
|(∇V (θ̂n−1), E{Kn(∆n)v̄n|Fn−1})| ≤ (11)

ρ
αn

βn
V (θ̂n−1)

ρ−1
ρ × ‖E{Kn(∆n)v̄n|Fn−1}‖ρ ≤

≤ αnβnC∆v

(
(ρ − 1)V (θ̂n−1) + 1

)
.Using the independence of w̄n and ∆n, local Lebesguecondition (C) for ∇xF (θ̂n−1, ·) and condition (7), also get

∇f(θ̂n−1) = E{∇xF (θ̂n−1, w)|Fn−1} =
β−1

n E{Kn(∆n)F̄ ′

n(0, 0)|Fn−1}.Denote the di�erence F̃ ′

n = F̄ ′

n(t′, t′′) − F̄ ′

n(0, 0) andestimate it's abcolute value. Considering condition (B) andthe fact that t′ ∈ (0, 1), for the algorithm (8) derive |F̃ ′

n| =
|(∇xF (θ̂n−1 + t′βn∆n, wn) −∇xF (θ̂n−1, wn), βn∆n)| ≤
≤ βn‖∆n‖ ρ

ρ−1
‖∇xF (θ̂n−1 + t′βn∆n, wn)−

−∇xF (θ̂n−1, wn)‖ρ ≤ Mβ2
n‖∆n‖ρ‖∆n‖ ρ

ρ−1
.For algorithms (5) and (6) the same formula can bederived analogously.From the last formula, bounding the scalar productin the �rst term of (10), from conditions (A)�(D) andinequalities of H�older, Jensen, Yung we get

(∇V (θ̂n−1), E{Kn(∆n)F̄ ′

n(t′, t′′)|Fn−1}) =

βn(∇V (θ̂n−1),∇f(θ̂n−1)) + (∇V (θ̂n−1),

E{Kn(∆n)F̃ ′

n|Fn−1}) ≥ βnµV (θ̂n−1)−

−ρV (θ̂n−1)
ρ−1

ρ E{‖Kn(∆n)‖ρ|F̃
′

n| |Fn−1}) ≥

≥ βnµV (θ̂n−1) − Mβ2
nρ

(
ρ − 1

ρ
V (θ̂n−1) +

1

ρ

)

E{‖Kn(∆n)‖ρ‖∆n‖ρ‖∆n‖ ρ

ρ−1
} ≥

≥ βnµV (θ̂n−1) − β2
nMK̃

(
(ρ − 1)V (θ̂n−1) + 1

) (12)Then, from (11) and (12) for conditional expectationof the second term in formula (9), to continue (10), get,
· · · ≤ −αnρµV (θ̂n−1) + αnβn(MK̃ + C∆v)·

·
(
(ρ − 1)V (θ̂n−1) + 1

)
. (13)Let's bound the conditional expectation of the thirdterm in right side of inequality (9). Using Jensen inequality

( a+b
2

)ρ ≤ 1
2
(aρ + bρ) for convex function xρ, we get

21−ρνnE{‖Kn(∆n)ȳn‖
ρ
ρ|Fn−1} ≤ νnE{‖Kn(∆n)·

·F̄n(1, 1)‖ρ
ρ|Fn−1} + νnE{‖Kn(∆n)v̄n‖

ρ
ρ|Fn−1}. (14)For algorithms (5) and (6) we get |F̄n(1, 1)|ρ ≤

2ρ−1
(
|F̄n(0, 0)|ρ + |F̄ ′

n(t′, t′′)|ρ
)

≤ 2ρ−1|F̄n(0, 0)|ρ +
2ρ−1|F̄ ′

n(t′, t′′)+Fθ−Fθ|
ρ ≤ 2ρ−1|F̄n(0, 0)|ρ+22ρ−2(|Fθ |

ρ+
|F̄ ′

n(t′, t′′) − Fθ|
ρ) using

Fθ =

{
1
2

(
(∇F (θ,w2n) + ∇F (θ, w2n−1)), βn∆n

)
, for (5),(

∇F (θ, w2n), βn∆n

)
, for (6),From this, using H�older inequality [19] (p. 129) and con-ditions (B), (D), continue (14) · · · ≤ αnδn(V (θ̂n−1) +

Ew{‖∇xF (θ, w)‖ρ
ρ}) + 22ρ−2K̂Mρνnβ2ρ

n + 2ρ−1K̄νn +
νnξn ≤

≤ αnδnMρV (θ̂n−1) + 2ρ−1K̄νn + χn + νnξn. (15)In case of the algorithm (8) for some point xm, whichbelongs to a segment between θ̂n−1 + βn∆n and θ, fromthe middle-value theorem and Jensen inequality we get:
|F̄n(1, 1)|ρ = |F (θ, wn) + (∇xF (xm, wn), θ̂n−1+

βn∆n − θ)|ρ ≤ 2ρ−1|F (θ, wn)|ρ+

+22ρ−2(‖∇xF (xm, wn) −∇xF (θ, wn)‖ρ
ρ+

+‖∇xF (θ,wn)‖ρ
ρ)(‖θ̂n−1 − θ‖ ρ

ρ−1
+

+‖βn∆n‖ ρ

ρ−1
)ρ ≤ 2ρ−1|F (θ, wn)|ρ+

+22ρ−2

(
2ρ−1Mρ

(
V (θ̂n−1) + βρ

n‖∆n‖
ρ
ρ

)
+

+‖∇xF (θ, wn)‖ρ
ρ

)
βρ

nK(∆n).From last inequality for the algorithm (8) we get thesame inequality (15).Using the discussed notation and the bounds got above(13) and (15), inequalities(9) we can change on
V (θ̂n) ≤ (1 − γn)V (θ̂n−1) + φn + νnξn.Using the unconditional expectation from left and rightsides of the last inequality, we get inequalities

E{V (θ̂n)} ≤ (1 − γn)E{V (θ̂n−1)} + φn + νnσρ
n,from which the statements of the theorem 1 can be easy de-rived from corresponding [12] statements of the theorem 1.Proof of the theorem 1 �nished.
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