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Abstract
A well know problem of oscillations for plate in ultra-

sonic gas flow is considered. The chosen mathemati-
cal model is the boundary value problem proposed by
V.V. Bolotin where aerodynamic forces are accounted
for on the basis of flat section law (piston theory). The
linear and nonlinear version of the problem is consid-
ered with the damping coefficient assumed to be small.
It is shown that proper frequency 1:2 oscillation occurs
for velocities significantly smaller than the velocity of
flutter. In the nonlinear version this situation allows us
to show that there always exist unstable periodic solu-
tions in a small neighbourhood about the equilibrium
state. The latter comment implies that in the range up
to critical velocities there is a possibility of hard exci-
tation oscillations which can be a result in the destruc-
tion of the construction. The analysis of the problem in
the nonlinear setting is based on the direct application
of the normal form method to the nonlinear boundary
value problem.
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1 Introduction
In the paper we consider the well known problem of

elastic stability theory - flutter plate in ultrasonic gas
flow in the nonlinear version. It follows from the result
of analysis of the problem, that in most cases the linear
boundary value problem does not provide answers to
the major questions concerning the plate in ultrasonic
gas flow. Hard oscillations may arise causing destruc-
tion of the construction particularly for velocities deter-
mined from the linear problem which are significantly
smaller than the velocity of flutter. At the level of phys-
ical representation this hypothesis was formulated in
V.V. Bolotin’s well- known monograph [Bolotin,1961].
In this we propose a concrete mechanism partially ex-

plaining this hypothesis from mathematical point of
view. It is based on the fact that accounting for such
a factor as resonance of self frequency 1:2 very of-
ten leads to the appearance of unstable oscillations for
those velocities of the flow for which the formal sta-
ble equilibrium state results from the linear theory. Re-
search of the nonlinear problem is based on the applica-
tion of Poincare – Dulac normal form method adapted
to the boundary value problems which simulate the
phenomenon of nonlinear panel flutter. Evidently, the
full analysis in linear version is necessary too. In this
case it was carried out without the use of the traditional
Galerkin’s method. Numerical methods were used at
the final analysis stage for research of 2 nonlinear equa-
tions.
Let us consider a more detailed problem setting

which is taken from the of V.V. Bolotin’s mono-
graph and assumes the case of cylindrical cur-
vature. A similar boundary value problem was
considered in F.Holmes and J. Marsden’s works
[Holmes,1977;Holmes,Marsden,1978].
Let us represent the corresponding boundary value

problem in nondimensionalised form

wtt + gwt + wxxxx + cwx + m1(wx)2+

+m2(wx)3 − βwxx

1∫
0

(wx)2dx = 0,
(1)

w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, 1) = 0. (2)

Equation (1) which describes the plate oscillation in
ultrasonic gas flow is considered with the boundary
condition (2), when the plate is supported. The choice
of such a variant is not required and can be replaced by
different boundary value conditions. For example,

w(t, 0) = w(t, 1) = wx(t, 0) = wx(t, 1) = 0.



Explicit form of positive coefficients g, c,m1,m2, β
can be found in the monograph [1], and also in other
works on the same subject. For example, c – nondi-
mensionalised flow velocity. Here
c = p∞κl3U/(c∞D), where U – flow velocity, l –
plate length, κ – exponent of polytrop, D – cylin-
drical rigidity, p∞ – in inperturbed gas, c∞ – ve-
locity of sound in gas. Aerodynamic force are ac-
counted for on the basis of the law of flat sec-
tions [Il’ushin,1956;Lighthill,1953] (piston theory),
while equation (1) contains only summands of Tai-
lor’s decomposition of the corresponding formula
[Bolotin,1961].
Let’s consider boundary value problem (1),(2) lin-

earized in zero

wtt + gwt + wxxxx + cwx = 0, (3)

w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, 1) = 0. (4)

A study of the spectrum of the stability of the boundary
value problem (3),(4) implies finding the nontrivial so-
lution of the form w(t, x) = exp(λt)v(x), where v(x)
fulfills the boundary conditions (4). Therefore v(x) is
a proper function of linear differential operator

A(c)v = v(IV ) + cv′, (5)

the domain of definition consists of smooth functions
v(x), satisfying the boundary conditions

v(0) = v(1) = v′′(0) = v′′(1) = 0. (6)

Let g ∼ 1. Then for c = 0 proper values of
operator (5) µn = π4n4 (n ∈ N) and, it implies
that all the points of the stability spectrum lie on the
left plane (λ2

n + gλn + µn = 0). The smallest
c = c0, above which equilibrium state becomes un-
stable is called flutter velocity. The stability spec-
trum contains the pair of simple proper values ±iσ0 for
c = c0. Nonlinear analysis assumes the extension An-
dronov - Hopf’s bifurcation theory on the correspond-
ing class of boundary value problem. In this direc-
tion, the possibility of soft and hard auto excitation
has been shown in [Holmes,1977;Holmes,Marsden,
1978; Kulikov,Liberman,1975;Kulikov,1976;Kolesov
V.,Kolesov Yu.,Kulikov,Fedik,1978].
A different problem stems out if nondimensionalised

damping coefficient g is sufficiently small. In A.A.
Movchan’s works he introduced the notion of lower
critical velocity of flutter i.e. a minimum positive
c = c1, above which the points of stability spec-
trum leave the real axis for the first time. For
c = c1 the stability spectrum of the boundary value
problem contains a multiple pair of purely imaginary

proper values. This problem was considered in [Ku-
likov,2006;Kulikov,2006]. The obtained results were
presented at the IX Russian congress on theoretical and
applied mechanics [Kulikov,2006]. In this case it is
shown that hard auto oscillations mode is common. It
is clear that in this case c1 < c0, i.e there is a loss
of stability of the equilibrium state and oscillations of
large amplitude emerges with velocities less than the
classical velocity of flutter.
It will be shown below that a similar picture is true

if c ≈ c2, where for c = c2 proper values ±iσ,±2iσ
emerges in the stability spectrum. The analysis of the
nonlinear problem shows that even in this case hard
mode auto oscillations can be realized (c2 < c1 < c0).
It is useful to mention that the assumption of a small
damping coefficient is sufficiently natural. It is true,
for example, in case when the coefficient of cilindrical
rigidity is large. Remember that cylindrical rigidity co-
efficient is proportional to the modulus of elasticity E,
and for aluminium E = 7 × 107H/m2.

2 Linear analysis of the problem
Let’s consider the boundary value problem (3),(4) for

g = 0 :

wtt + wxxxx + cwx = 0, (7)

w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, 1) = 0. (8)

Stability spectral points λ are related with the proper
values of the differential operator A(c) through equal-
ity λ = ±i

√
µ. Therefore resonance of proper fre-

quency 1:2 occurs if among the proper numbers of the
operator A(c) there exist proper values µ1, µ2 such as
µ1 : µ2 = 1 : 4. We apriori consider only those c, for
which the including c ∈ (0; c1) is true implying that in
this interval of values c all proper values of the operator
A(c) are real. The minimum possibility for the realiza-
tion of this kind of resonance c is represented by c2. To
find this value we need to consider the boundary value
problem

v(IV ) + cv′ = µv, (9)

where v(x) sytisfies the boundary conditions (8).
The general solution of equation (9)

v(x) = a1 exp(γ1x) + a2 exp(γ2x)+

+a3 exp(γ3x) + a4 exp(γ4x),
(10)

where γ1, γ2, γ3, γ4 are roots of the characteristic equa-
tion

γ4 + cγ − µ = 0. (11)



In [Kulikov,2006;Movchan,1956] it was established
that the roots of the equation (11) has the form

γ1,2 = α ∓ β, γ3 = −α − ∆, γ4 = −α + ∆,

where ∆ =
√

β2 − 2α2, α, β ∈ R, β > 0. Evi-
dently,that

c = 4α(β2 − α2), λ = (α2 + β2)(β2 − 3α2). (12)

Substitute the solution of (10) in the boundary condi-
tions (8). To find aj(j = 1, 2, 3, 4) we obtain a system
of linear equations

4∑
j=1

aj = 0,

4∑
j=1

ajqj = 0,

4∑
j=1

ajγ
2
j = 0,

4∑
j=1

ajγ
2
j qj = 0 (qj = exp(γj)).

The condition of the existence of nontrivial solution
leads to the characteristic equation

P (α, β) = 0, (13)

where P (α, β) = (3α2 + β2∆2) sin βsh∆ +
2α2β∆(ch(2α− cos βch∆)). By using Cardano’s for-
mulas, the assumption that µ ∈ R β > 0, from equa-
tion (12) can be expressed as α β

α = α(µ, c) =
√

Θ(µ, c)
1
3 − (µ/12)Θ(µ, c)−

1
3 ,

β = β(µ, c) =
√

α2(µ, c) +
√

4α4(µ, c) + µ,

(14)
where Θ(µ, c) = c2/128 +

√
(µ/12)3 + (c2/128)2.

After substituting α, β, expressed using µ and c with
the help of equalities (14) for µ = σ2 and µ = 4σ2

correspondingly in the characteristic equation (13) we
obtain a system of equation for the determination of c
and σ

P1(σ2, c) = P (α(σ2, c), c) = 0,

P2(4σ2, c) = P (α(4σ2, c), c) = 0.
(15)

The solution of the system (15) is determined c = c2,
for which resonance 1:2 is realized by its proper fre-
quency. Analysis of this system showed that it has a
countable number of solutions (σn, c2n) n ∈ N. Here
c2 is chosen as min(cn), where n ∈ N. The given sys-
tem was solved by Zeidel’s method with localization of
the roots. Fig. 1 shows two graphs of implicit func-
tions P1(σ2, c) = 0 and P2(4σ2, c) = 0 in the case

of realizing the solution which gives min(c2n) n ∈
N. It turns out that c2 = c21 = 225.04379, σ2 =
σ2

1 = 369.43038. It is clear that c2 < c1, where c1

– lower critical flutter’s velocity (c1 = 343.35592 [Ku-
likov,2006]). Formulas (14) enable the restore of the
value α and β, γ1, γ2, γ3, γ4 and finally having solved
the system of algebraic equation for a1, a2, a3, a4 we
found the corresponding proper functions. For µ = σ2

we obtain

γ1,2 = 2.47077 ∓ 5.37388i, γ3 = −6.55317,

γ4 = 1.61163, a1 = −0.28964 ± 0.04293i,

a3 = −0.42072, a4 = 1.

A given function will henceforth be represented by
e1(x). For µ = 4σ2 let the proper function of the dif-
ferential operator A(c) be represented by e2(x). In this
case we substitute in (10)

γ1,2 = 1.45477 ∓ 6.38669i, µ3 = −7.50105,

µ4 = 4.59148, A1 = −7.6272 ∓ 38.02131i,

A3 = 14.2544, A4 = 1.

This problem can be studied by Galerkin’s method,
were as usual we choose the basis function of the
form sin πx, sin 2πx, . . . . Having chosen a two term
Galerkin’s approximation we can find that c2 =
200.87. In the case of a three term approximation c2 =
227.05, by using Galerkin’s method when four basic
functions are chosen we obtain c2 = 224.43.
In fig.1 the dashed lines represent a graph of the func-

tion P (4σ2, c) = 0, solid lines represent a graph of
the function P (σ2, c) = 0. Their intersection gives the
desired solution.

3 Analysis of the problem in a non linear setting
Let us consider the nonlinear boundary value problem

(1), (2) when c = c2 +ε0a0(a0 ∈ R). We also consider



that

g = 2g0ε(g0 > 0).

In this case the solution of the boundary value prob-
lem (1),(2) can be found in the form of the sum taken
according to the power of ε

w(t, x, ε) = εw1(t, s, x)+

+ε2w2(t, s, x) + ε3w3(t, s, x) + . . . .

Here s = εt, points are used to represent the
terms with higher order of smallness on ε. At
last, w1(t, s, x), w2(t, s, x), w2(t, s, x) are sufficiently
smooth functions for a set of variables. As functions
of x , for all t, s they are included in the domain of
definition of linear differential operator A(c) and as for
variable t for all s and x they are almost periodic func-
tions. Let

w1(t, x, s) =
∞∑

k=1

(zk(s)Ek(t, x) + zkEk(t, x)),

Ek(t, x) = ek(x) exp(iσkt),

where σ1 = σ, σ2 = 2σ, and the rest σk are chosen so
that σ2

k are other proper values of the differential oper-
ator A = A(c), different from σ2, 4σ2, and ek(x) are
their corresponding proper functions . In this case func-
tions zk(s) for all s must be chosen so that the func-

tion w1(t, x, s) ∈
◦

W 4
2 [0; 1] – Sobolev’s function space,

which have generalized derivatives by x up to fourth
order and which can be integrable square (contains in
L2(0; 1)) for all t ∈ [0;T ].
”Zero” means that only functions satisfying the

boundary condition (2) are considered. The functions
w2(t, s, x), w3(t, s, x) are to be chosen as the solution
of linear nonhomogeneous problem.
So the function w2(t, x) is a solution of the boundary

value problem

∂2w2

∂t2
+

∂4w2

∂x4
+ c2

∂w2

∂x
= F2(t, s, x),

w2(t, s, 0) = w2(t, s, 1) =
∂w2

∂x
|x=0 =

∂w2

∂x
|x=1 = 0,

where F2(t, s, x) = −2(∂2w1/∂t∂s + g0(∂w1/∂t))−
a0(∂w1/∂x) − m2(∂w1/∂x)2. We will not write the
boundary value problem for w3(t, s, x) because its
analysis results will be needed latter.
From the conditions of the solvability of the boundary

value problem in the class of trigonometry polynomes

by t it follows that zn(s) satisfy the system of usual
differential equations

z′1(s) = −(g0 − 0.07a0i)z1(s) + 93.739m2z1(s)z2(s),

z′2(s) = −(g0 + 0.013a0i)z2(s) − 0.001m2z
2
1(s),

z′k(s) = −(g0 + αki)zk(s),

where k = 3, 4, 5, . . . , αk ∈ R. These constants are
computed from the conditions of the solvability of the
boundary value problem in the class of the trigonom-
etry polynomes of nonhomogeneous boundary value
problems

∂2w

∂t2
+

∂4w

∂x4
+ c2

∂w

∂x
= −a0

∂

∂x
Ek(t, x),

w(t, 0) = w(t, 1) = wxx(t, 0) = wxx(t, π) = 0.

It is clear that for any value αk the statement
lim

s→∞ zk(s) = 0 is true. Therefore only the first two

equations play an important role in the study of the sys-
tem.
Let

z1(s) = d1 exp(iα1s)u1(s),

z2(s) = d2 exp(iα2s)u2(s),

where

d2
1 =

1
ab

, d2 =
1
a
, a = −93.739m2,

b = −0.001m2, α2 − 2α1 =
π

2
.

Then u1(s), u2(s) satisfy the following system of dif-
ferential equations

u′
1(s) = −(g0 + iβ1)u1(s) + u1u2(s),

u′
2(s) = −(g0 + iβ2)u2(s) + u2

1(s),
(16)

where β1 = −0.07a0, β2 = 0.013a0.
Lemma.The system of differential equation (16) has a

periodic solution

u1(s) = v1(s) = ρ1 exp(iωs),

u2(s) = v2(s) = ρ2 exp(iη) exp(2iωs),
(17)

where ρ1 =
√

g2
0 + (ω + β1)2, ρ2 = ρ1, ω = −(β1 +

β2)/3, η = arccos(g0/ρ1). This solution is unstable.



The proof of the statement consists of two parts. The
existence of this solution is checked by substituting
(17) in (16). To check the stability let’s take

u1(s) = u1p(s)(1+w1(s)), u2(s) = u2p(s)(1+w2(s))

and for w1(s), w2(s) we obtain an auxiliary system of
equations

w′
1 = (−iω − (g0 + β1i)w1 + ρ2(w1 + w2) exp(iη),

w′
2 = (−2iω − (g0 + β2i))w2 + (2ρ2

1/ρ2)w1 exp(−iη).

The zero equilibrium state stability of this linear system
is studied in a standard way.
Theorem.The unstable periodic solution of boundary

value problem (1),(2)

w(t, x, ε) = [
1√
ab

exp(iσt + iα1εt)e1(x)+

+
1
a

exp(2iσt + 2iα2εt)e2(x) + c.c.] + o(ε).

corresponds to the periodic solution (17) of the system
(16) if c = c + a0ε. The symbol c.. in the brackets
represents a complex conjugate function.
The proof of the theorem stems from the results in

[Kolesov,Kulikov,2003] (see section main bifurcation
theorem).
Finally, we admit that the following conclusion can be

drown: zero equilibrium state for c = c2 + ε asymp-
totically is stable from a formal point of view but in a
small neighbourhood around it, there exists a nonsta-
ble periodic solution which may cause hard excitation
oscillation.
Remark: The problem of nonlinear

flutter was also considered in [Dow-
ell,1966;Dowell,1967;Thompson,1982].
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