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Abstract
We investigate the effect of growth mechanisms on

the synchronizability of dynamical networks. We con-
sider the effect of adding new nodes to an existing
synchronized dynamical network using the Barabási-
Albert growth algorithm. Our main contribution is to
show that an algorithm that combines a version of pref-
erential attachment with a small number of randomly
selected bridging connections enhances the synchro-
nizability of the network by providing a more com-
pact eigenvalue spectrum while preserving the general
structural characteristics of scale-free networks. We il-
lustrate our results with numerical simulations.
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1 Introduction
A network is a set of entities, called nodes, that in-

teract through connections, called edges. In particular,
if the pattern of connections between nodes is not triv-
ial the network is called structurally complex, or sim-
ply, a complex network [Newman, 2010]. The study
of networks has focus mainly on the structural aspects
where nodes and edges are assumed to be void of dy-
namics. In this way, one can use mathematical tools
like graph and probability theories to determine key
features of the network structure. In this context, it has
been observed that real-world networks share different
structural features such as the now famous small-world
(SW) and scale-free (SF) effects [Wang and Chen,
2003]. Prominent examples of networks that display
these structural features are the Internet, metabolic net-
works, social network, etc. However, it’s well-known
that for many real-world networks, nodes are not just
static entities. In fact, the states of their nodes change

over time. The concept of complex dynamical network
naturally arises by considering a network with complex
structural topology where each node is a dynamical
system. In recent years, significant results have been
obtain in regards to the stability of collective behav-
iors in complex dynamical networks [Boccaletti et al.,
2006; Wu, 2007; Arenas et al., 2008; Barajas-Ramı́rez,
2012]. These investigations have establish well-known
criteria for network synchronization, like the Master
Stability Function (MSF) [Pecora and Caroll, 1998]
and the so-called λ2 criterion [Li, 2005], which high-
light the crucial influence of the network structure on
the stability of its synchronized dynamics.

Network synchronizability is understood as how eas-
ily the synchronized behavior emergences as a stable
solution of the network dynamics. In basic terms,
the synchronizability of a network is determined by
the structural features of the network interconnections
[Pecora and Caroll, 1998]. The stability of the syn-
chronized behavior depends on two factors: the node
dynamics and the eigenspectrum of the network cou-
pling matrix. Recent investigations have related the
structural features of the network, including average
distance, degree distribution and betweeness central-
ity, to the network synchronizability [Chen and Duan,
2008; Zhao et al., 2007]. However, these results do
not consider other forms of evolution that are present
in real-world networks, like growth. Some efforts have
been published considering the addition of one or two
extra links or nodes to the current network structure
[Chen and Duan, 2008]. A complementary question
directly follows: how the network synchronizability is
affected by the structural evolution of the network? In
this contribution a step is taken in this direction, we
investigate how the choice of growth mechanisms can
enhance the synchronizability of the network. In pre-
vious works, Wang and Chen analyzed the stability
of synchronization on small-world and scale-free net-
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works with different number of nodes, showing that
larger networks coupled with a small-world connec-
tivity have better synchronizability, in the sense that a
smaller coupling strength is required to achieve syn-
chronization, than nearest neighbors networks of simi-
lar size. On the other hand, synchronizability in scale-
free networks is relatively independent from the num-
ber of nodes in the network [Wang and Chen, 2002a;
Wang and Chen, 2002b]. In regards to the synchro-
nizability of growing networks, Fan et al. investigated
the effects of using alternative versions of preferential
attachment which optimize the criteria for synchroniza-
tion as the network growths, their synchronous prefer-
ential attachment mechanism results on networks with
improved synchronizability [Fan and Wang, 2005; Fan
et al., 2005]. However, as the network retains predom-
inantly scale-free in structure, its synchronizability is
basically independent of the network growth. Despite
these results, many aspects of the evolution of real-
world networks have are not taken into account. In par-
ticular, situations such as the addition of multiple nodes
and rewiring of the network connection topology have
not being considered.

In this contribution, we propose a growth algorithm
that inherits the basic mechanism of the BA model, the
preferential attachment, to add nodes to an existing net-
work, and complements the network growth algorithm
by adding a small number of links uniformly at random
between the nodes already in the network. It should be
noted that unlike the previous works, where synchro-
nizability is analyzed for networks constructed up to a
fixed number of nodes using a given construction al-
gorithm, we investigate the effect of adding nodes and
links to an existing network which is already synchro-
nized. This is a subtle but significant difference, in-
stead of changing the size of the network and effec-
tively growing it from zero, we add nodes to an already
constructed network, we consider this to be a realis-
tic situation for network growth, where an initially de-
signed network is augmented and improved in order to
include new elements or provide services for a larger
population. This alternative view of growth as an on-
going process in the network frames our main contri-
bution as we show that a combination of preferential
attachment and random bridging enhances the synchro-
nizability of the network compare to the BA model.

The rest of the paper is organized as follows: Some
necessary concepts and definitions are given in Section
2. In Section 3, the growth process is described as a
transformation operator with two processes. We illus-
trate the effects of our alternative growth algorithm on
synchronizability in Section 4. Finally, in Section 5, the
contribution is concluded with some closing remarks.

2 Some Necessary Basic Concepts
Consider a network of N linearly and diffusively cou-

pled identical n-dimensional dynamical systems de-

scribed by the following equation:

ẋi = f(xi) + γ
N∑
j=1

cijxj , with i = 1, 2, ..., N (1)

where xi = [xi1, xi2, ..., xin]
⊤ ∈ Rn are the state

variables of the i-th node; f : Rn → Rn is a C1

function which describes the dynamics of an isolated
node; and the constant γ > 0 ∈ R is the network’s
coupling strength. The connectivity is describe by the
coupling matrix C = {cij} ∈ RN×N , which is con-
structed as follows: if the i-th and j-th nodes are cou-
pled the entries cij and cji are set to one (j ̸= i); oth-
erwise cij = cji = 0; with the diagonal elements given
by cii = −

∑N
j=1(j ̸=i) cij = −

∑N
j=1(j ̸=i) cji = −di,

where di is the degree of the i-th node.
If there are no isolated nodes, the connectivity matrix

is irreducible with an eigenvalue spectrum of the form
[Wang and Chen, 2003]:

0 = λ1 > λ2 ≥ λ3 ≥ ... ≥ λN , (2)

The dynamical behavior of the network is said to be
synchronized if the trajectories of every node asymp-
totically follow the same reference:

lim
t→∞

∥xi − x̄∥ = 0, for i = 1, 2, ..., N (3)

Then, the stability of the synchronized behavior can be
determine from the deviations to the synchronized so-
lution x1 = ... = xN = x̄. Here x̄ is called the syn-
chronized solution. Linearizing the synchronization er-
ror, ξi = xi − x̄, around x̄ the following variational
equation is obtained:

ξ̇i = J(x̄)ξi + γ
N∑
j=1

cijξj , for i = 1, 2, ..., N (4)

where J(x̄) is the Jacobian matrix of f at x̄. Expressing
(4) in terms of the eigenvalues of the coupling matrix
we have:

ν̇i = J(x)νi + γλiνi, for i = 1, 2, ..., N (5)

where [ν1, ..., νN ] = Ψ[ξ1, ...ξN ] with ΨCΨ⊤ =
diag{λ1, λ2, ..., λN}.
Applying the conventional definition of Lyapunov ex-

ponent (hi = limt→+∞ ∥J(t, x0)ui∥) to the expres-
sion in (5), the nN transverse Lyapunov exponents of
the network are given by [Barajas-Ramı́rez and Femat,
2012]:

µi(λk) = hi + γλk, (6)
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for i = 1, 2, ..., n and k = 1, 2, ..., N where hi repre-
sents the Lyapunov exponents of a node in isolation.
Synchronization is achieved if every transverse direc-

tion to the synchronized solution is contracting. That
is, if µi(λk) < 0 for i = 1, 2, ...n and k = 2, 3, ..., N .
Letting hmax = h1 be the largest Lyapunov exponent
for a node in isolation, and from (2) the synchroniza-
tion condition becomes µ1(λ2) = h1 + γλ2 < 0 or
equivalently

|λ2| >
hmax

γ
(7)

From the above results a direct relation can be es-
tablish between the stability of synchronization and
the eigenvalues of the corresponding coupling matrix.
Furthermore, we can say that for a network with a
fixed coupling strength, larger values of |λ2| indicate
an improved tendency towards synchronization, usu-
ally called a strong synchronizability [Li, 2005]. The
synchronization region of the network S is the set of
values of γ such that (7) is satisfied. This region can
be unbounded [−∞, α), or bounded [α1, α2] the size
of the synchronization region is related to the eigenra-
tio of the coupling matrix r = |λ2|

|λN | [Pecora and Caroll,
1998; Chen and Duan, 2008].
From the discussion above, the effect of adding nodes

and links on the synchronizability of a network can be
determine from the change in the value of the largest
non-zero eigenvalue and eigenratio from the initial
(Ck−1) to the resulting (Ck) coupling matrix

∆σk = |λ2(Ck)| − |λ2(Ck−1)|
∆rk = |λ2(Ck)|

|λN (Ck)| −
|λ2(Ck−1)|
|λN (Ck−1)|

(8)

where positive values of ∆σk and ∆rk indicate that
as the network growths its synchronizability becomes
stronger, while negative values indicate that becomes
more difficult. In this sense, even a small numerical
value for ∆σk and ∆rk is indicative of enhancement
due to growth, as such these criteria is a simple exten-
sion of the synchronizability measures defined in [Li,
2005; Pecora and Caroll, 1998; Chen and Duan, 2008].

3 Network Growth Mechanism
The growth mechanism is inspired in the Barabási-

Albert (BA) model [Barabási and Albert, 1999]. As
a first step we consider the generic steps outlined as
follows:
• Growth. Starting with an initial network with (N0)

nodes, at every iteration k, a small number nk (1 ≤
nk ≪ Nk) nodes with mk (mk ≤ Nk) edges are added
to the network and coupled to mk different nodes al-
ready present in the network.
• Attachment. The mk nodes to which the new node

will be connected are chosen at random, with the prob-
ability Π(j → i) of coupling a new (j-th) node to the

i-th node already in the network given by a preferential
attachment rule.
• Bridging. With probability pbr ≪ 1 additional

bridge edges are added to the resulting network.
In the original BA model the number of nodes and link

added in each iteration is fixed (nk = 1 and mk = m,
∀k), the preferential attachment is linear and given by

Π(j → i) =
di∑
q dq

(9)

where Π(j → i) is the probability of connecting the
new node j to the already existing node i, and is a func-
tion of its node degree di and the sum of all the other
node degrees. In the original model once the edges are
assigned they remain unaltered (pbr = 0). In that case,
after M iterations the network has NM = N0 + M
nodes and LM = mM edges. The main distinctive
characteristic of the resulting BA network is that its
connectivity follows a power-law degree distribution.
That is, the number of links per node is not close to the
average for the entire network. For this reason the BA
model is usually called the scale-free network model
[Albert and Barabási, 2002].
It has been argued that the BA model represents a

simplified approximation of the evolutionary processes
that produced the scale-free nature of the node distri-
butions observed in many real-world systems [New-
man, 2010]. However, many aspects of the evolution
of real-world networks are not capture by the original
BA model. Many variants have been proposed over
the last few years designed to improved on the orig-
inal model by capturing some specific aspect of net-
work evolution (see [Albert and Barabási, 2002], and
references therein). In particular, [Fan et al., 2005] pro-
posed a synchronous preferential attachment mecha-
nism in which the probability of connecting a new node
into the network was chosen to maximize the value of
criteria for synchronization (7) according

Π(j → i) =
λ2i∑
q λ2q

(10)

where λ2i is the largest nonzero eigenvalue of the cou-
pling matrix C obtained if the new node is coupled to
the i-th node in the network. Alternatively, in order to
minimize the value of λ2 instead of using a probability
(like equations (7) or (10)) the new node can be con-
nected only to the first N0 nodes, resulting on a multi-
center network with N0 hubs, where the λ2 = −N0 in-
dependently of the size of the network [Fan and Wang,
2005]. However, in such a connection all remaining
nodes (Nm − N0) will only be connected to the hub
nodes. Although, the works referenced above have sig-
nificantly advance the understanding of the synchro-
nization phenomenon on networks, many aspects of the
evolution of real-world networks are yet to be consid-
ered.
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In the following Sections, we investigate the effects
of network growth on the synchronizability of the net-
work. Where growth is understand as adding nodes
to an already synchronized network. In this sense the
evolution mechanism is interpreted as a transformation
that increases the coupling matrix dimension, while the
edges are assigned as a combination of preferential at-
tachment and a complementary bridging process that
randomly adds a small number of edges to the existing
network.

3.1 Growth Algorithm
The growth process can be interpreted as an event

driven system where at each iteration k the transfor-
mation, Φk, is applied to an initial network as follows:
Step 1: Adding nodes. At each iteration, nk new

nodes are coupled into the network.
This step transforms the previous coupling matrix Ck

into C̄k+1 ∈ RNk+1×Nk+1 with

C̄k+1 = Φ̄k+1(Ck) =
(

Ck, αNk+1

αNk+1
, 0

)
(11)

for k = 0, 1, 2, ... where Nk+1 = Nk + nk, αNk+1
∈

R(Nk+1−Nk)×(Nk+1−Nk) are zero matrices of appropri-
ate dimensions.
Step 2: Attachment. Each of the new nodes will be

coupled to mk+1(≤ Nk) of the nodes already exist-
ing in the network according to the linear preferential
attachment rule (9).
After this step the matrix C̄k+1 is transform into C̃k+1

with the same dimension given by

C̃k+1 = Φ̃k+1(C̄k+1) =

(
Ck, α̃Nk+1

α̃Nk+1
, 0

)
(12)

where the matrices α̃Nk+1
are obtained by changing

mk+1 entries of αNk+1
into ones according to (9).

Step 3: Bridging. With probability pbr ≪ 1 edges
are added between the existing nodes in network.
After this step the matrix C̃k+1 is transform into Ĉk+1

with the same dimension given by

Ĉk+1 = Φ̂k+1(C̃k+1) =

(
Ĉk, α̃Nk+1

α̃Nk+1
, 0

)
(13)

where the matrix Ĉk is obtained by changing
pbr

Nk(Nk−1)
2 entries from zero to one as a random pro-

cess with a uniform probability pbr.
Step 4: Diffusive coupling. In order to have a lin-

early and diffusively network, the matrix Ĉk+1 is trans-
formed into Ck+1 = Φ̌k+1(Ĉk+1) by adjusting the di-
agonal entries such that

cii = −
Nk+1∑

j=1,i̸=j

ĉij (14)
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Figure 1. The absolute value of |λ2(Ck)| of each resulting net-
work as nodes are added one at a time using the BA model

In a compact notation, each iteration of the growth
process can be represented by the transformation Φk+1

given, from Step 1 to 4, as:

Ck+1 = Φk+1(C(k)) = (Φ̌ ◦ Φ̂ ◦ Φ̃ ◦ Φ̄)k+1(Ck) (15)

In the following Section, the effect of the proposed
growth mechanism in the synchronizability of the net-
work is investigated.

4 Numerical Results
We consider two scenarios: In the first, the net-

work growths by adding nodes one at a time using
the BA preferential attachment mechanism. In the sec-
ond, the network growths following the algorithm de-
scribed above, for comparison purposes we consider
that growth is one node at a time, however, we added
a very small number of bridging edges to the resulting
network.
Our main concern is to establish if synchronizability

is enhanced with our alternative growth mechanism. To
this end, our initial network is fully-connected network
with ten identical nodes. Is worth noting that different
values for (mk = m, ∀k) the number of edges added
to attache each node to the network is a very sensible
parameter, therefore we let it be constant and equal in
both scenarios. The bridging probability pbr ≪ 1 is
also set constant at small value.
In Figure 1, we have |σk| plotted as a function of the

number of nodes in the network. The results are taken
as the average of fifty network realizations. The results
show that regardless of the number mk being used,
λ2 is reduced significantly from the initial values and
becomes stationary as the number of nodes increases.
Further, the value at which |λ2(Ck)| becomes station-
ary depends directly on mk, with smaller values of m
reducing further the final value of |λ2(Ck)| for larger
networks.
In Figure 2, we have |σk| the resulting λ2 values for

the BA model and our proposed growth algorithm with
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Figure 2. Comparison between |λ2(Ck)| using the BA method
and our proposed growth algorithm with bridging connections.

a probability of additional edges resulting in at most
two additional connections (pbr = 0.2). The results
show that the λ2 with a small number of bridging edges
is larger, that is, the synchronizability is enhanced.

5 Conclusion
We investigated the changes in the synchronizability

of a dynamical network as its number of nodes and
edges growths. The novelty of our analysis cames from
two aspects of the analysis: On the one hand, we fo-
cus on the effect of the actual growth process, that is,
the addition of nodes and links to a network already
synchronized. On the other hand, the growth process
was described as a transformation which can be design
to enhance the stability characteristics of the synchro-
nized behavior. Our results show that adding nodes to
an already synchronized network using the preferential
attachment mechanism, reduces the value of |λ2| re-
gardless of the choice of mk, and that this reduction
reaches a static value for larger networks. We inter-
preted the reduction on the value of λ2 as a lost of
synchronizability on the resulting network. Then, we
propose an alternative growth model where by adding
a small number of bridging edges makes the value of
|λ2| larger in the resulting network. In this sense, we
proposed a growth mechanism that enhances the syn-
chronizability of the network as it growths.
In this initial investigation, we proposed a formula-

tion of the growth mechanism as a transformation of
the coupling matrix of a network. This representation
allows for the investigation of the effect of more gen-
eral situations, such as the addition or elimination of
more than one node at a time, and even can help in the
formulation of the stability problem for a network with
changing dimension. Results related to these different
situations on the synchronized behavior of a growing
network will be reported elsewhere.
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