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Abstract: Passification-based direct adaptive control is considered for polytopic uncertain
linear time-invariant multi-input multi-output systems. Linear Matrix Inequality based
results are provided to guarantee that the adaptive algorithm passifies the system whatever
the uncertain parameters in some given set. The contributions are based on the introduc-
tion of a parallel feed-forward shunt that liberates from the strong equality constraint
PB = CT GT often used for strict passification. The shunt, combined with the intro-
duction of slack variables, allows to produce results without assumptions on which data
is uncertain in the process model. Formulas proving robust passification are formulated
as Linear Matrix Inequality and can therefore be efficiently tested. A simple academic
example illustrates the results.
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1. INTRODUCTION

Adaptive control techniques are conceived with the
idea that on line modification of the control algorithm
is needed in order to reject the inevitable uncertainties
and disturbances. One such adaptive scheme (Ioannou
and Sun, 1996; Åström and Wittenmark, 1989) re-
lies on adaptive parameter estimation which gives,
either directly or after some computation, the data for
tuning the controller. Yet another adaptation scheme
(Fradkov, 1974; Kaufman et al., 1994) takes advan-
tage of passivity properties to perform directly the
tuning of the controller gains parameters with the
sole output measurements. The paper is dedicated to
robustness issues in this passification-based strategy
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(also called simplified adaptive control in (Kaufman
et al., 1994)).

The case of state-space linear time-invariant (LTI)
systems is considered (ẋ = Ax + Bu, y = Cx).
Passivity-based adaptive control of such systems is
proved to be possible if there exists a combination of
the outputs ŷ = Gy such that the system from its
inputs u to the artificial output ŷ is hyper minimum
phase (Fradkov, 2003). Equivalently it corresponds
to the existence of a static output feedback u =
Fy + v such that the closed-loop from v to ŷ is
strictly passive (the open-loop system is sometimes
called almost strictly passive (Kaufman et al., 1994)
in that case). One interesting issue is that for a given
matrix G the problem of proving that a system is
static feedback passifiable can be formulated in terms
of Linear Matrix Iinequalities (LMIs) and for some
cases (Barkana et al., 2006; Peaucelle et al., 2006)



methodologies to choose the matrix G have been
provided.

At this stage a question arises: why performing adap-
tive control if static feedback is available? The answer
is that adaptive control is expected to be robust and
this may be proved by the existence of a parameter-
dependent passifying static feedback. In a sense this
indicates, for particular situations, that the existence
of an estimation/gain-tuning adaptive control implies
the validity of a simple passivity-based adaptive law.

In (Peaucelle et al., 2006), LMI-based results are de-
rived for the existence of a parameter-dependent static
feedback that passifies the system under the assump-
tion that only the A matrix of the LTI system are
affected by uncertainties. This limitation may seem
inevitable if considering strict passivity of systems
without feed-through gains. Indeed it relies on an in-
equality constrain PB = CT GT which is hard to
satisfy if the B and C matrices are imperfectly known.
Inspired by the results of (Kaufman et al., 1994),
a parallel feedforward gain (also known as a shunt)
is introduced in order to extend the results to sys-
tems where all matrices are uncertain. LMI results
are produced that allow the simultaneous design of
the feedback and shunt gains that both have the same
polytopic structure as the uncertain system. Similarly
to the results of (Yaesh and Shaked, 2006) (that con-
siders state-feedback and not output-feedback), ro-
bustness is proved using parameter-dependent storage
functions thanks to the slack-variable methodology of
(Peaucelle et al., 2000).

The paper is organized as follows. First, a brief section
is devoted to the description of the considered static
parameter-dependent and adaptive control schemes.
In particular, the adaptive control is composed of a
dead-zone type function which is needed for prov-
ing closed-loop stability and which, as suggested in
(Åström and Wittenmark, 1989), has disturbance re-
jection properties. In the third section, the passifica-
tion problem is formulated and LMI conditions are
provided for the case of LTI systems without uncer-
tainties. The fourth section exposes the robust LMI
results and finally a numerical example is treated in
the last section.

Notations: Rm×n is the set of m-by-n real matrices.
AT is the transpose of the matrix A.1 and 0 are respec-
tively the identity and the zero matrices of appropriate
dimensions. For symmetric matrices, A > (≥)B if
and only if A−B is positive (semi) definite.

2. CONTROL STRATEGIES

The paper considers passification of uncertain LTI
systems described in state-space as Σ(∆):

ẋ = A(∆)x + B(∆)u , y = C(∆)x (1)

where x ∈ R
n is the state, u ∈ R

m is the control
input and y ∈ Rl is the measurement output. ∆ stands

for parametric uncertainties which are supposed to
belong to a given set ∆ and are assumed to be constant
(or varying sufficiently slowly in comparison with the
system dynamics).

Two control strategies are adopted and compared. One
is parameter-dependent static output-feedback

u(t) = F (∆)y(t) + v(t) , (2)

and supposes measurement or estimation of the uncer-
tain parameters ∆.

The second, is adaptive control defined as

u(t) = K(t)y(t) + v(t)
K̇(t) = −Gy(t)yT (t)Γ− φβ,γ(K(t))Γ

(3)

where φβ,γ is a dead-zone type function defined as
φβ,γ(K) = 0 if Tr(KT K) ≤ γ and

φβ,γ(K) =
Tr(KT K)− γ

βγ − Tr(KT K)
K

if γ ≤ Tr(KT K) < βγ, where γ > 0 and β > 1. For
the scalar case, the function is as represented in Figure
1. Throughout the paper admissible initial conditions:
Tr(KT (0)K(0)) < βγ are assumed.

Figure 1. The scalar case dead-zone function for γ =
10 and β = 2
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The adaptive control law is conceived such that the
term −Gy(t)yT (t)Γ tunes in real time the feed-
back gain K(t) in order, hopefully, to converge to-
wards passifying values. Conditions for that property
to hold are given in the next section. The second
term −φβ,γ(K(t))Γ is intended to guarantee bounded
values for K(t). As shown in (Åström and Witten-
mark, 1989; Peaucelle et al., 2006) such term also
contributes to robustness with respect to external dis-
turbances, in particular to noise on the measurements.
Some properties of φβ,γ are now given.

Lemma 1. For all F satisfying Tr(FT F ) ≤ γ and for
all K, the following inequality holds

Tr(φβ,γ(K)(K − F )T ) ≥ 0 .

Proof : Take T such that FT F ≤ T with Tr(T ) ≤ γ.
A Schur complement argument gives[

T FT

F 1

]
≥ 0 .



Pre and post multiply this inequality by
[
1 −KT

]
and by its transpose respectively to get

T − FT K −KT F + KT K ≥ 0 .

Add and substract KT K in this expression to get

(K − F )T K + KT (K − F ) ≥ KT K − T

which, taking the trace of the inequality, implies

2Tr((K − F )T K) = 2Tr(K(K − F )T )
≥ Tr(KT K − T ) ≥ Tr(KT K)− γ

and this allows to conclude. �

Lemma 2. If y(t) is bounded for all t ≥ 0, then
Tr(KT (t)K(t)) < βγ for all t ≥ 0.

Proof : Consider the following Lyapunov function
V (K) = Tr(KKT ). Its derivatives along the trajec-
tories writes

V̇ (K) = −2Tr(GyyT ΓKT + φβ,γ(K)ΓKT )
= −yT (ΓKT G + GT KΓ)y

−2
Tr(KT K)− γ

βγ − Tr(KT K)
Tr(KT ΓK) .

The last term in this formula goes to infinity as
Tr(KT K) goes to βγ. Therefore, for bounded values
of y and K there exists a scalar α such that V̇ (K) < 0
for all K such that α ≤ Tr(KT K) < βγ, i.e. the tra-
jectories are decreasing and Tr(KT K) cannot exceed
βγ. �

Note that if the measurements are affected by bounded
noise or disturbances, then the result of lemma 2
remains valid.

3. CLOSED-LOOP PASSIVITY

This section considers the case of systems without
uncertainties. The goal is to derive constructive LMI
conditions for that case. These will allow in the next
section to produce robustness results.

Let the LTI system described in state-space as Σ:

ẋ = Ax + Bu , y = Cx (4)

Passification is looked for by means of either static
feedback u = Fy + v or non-linear adaptive feedback
(3). In both cases the closed-loop enters the format

η̇ = f(η) + B̂v(t) , y = Ĉη (5)

where η = x in case of static feedback and contains
all the elements of K in case of adaptive feedback. In
this last case f is a non-linear function.

For a state-space model defined by a state η, an input
vector v and an output vector z, consider the following
inequality

V (η(t)) ≤ V (η(0)) +

t∫
0

[
v(θ)T z(θ)− ρ(η(θ))

]
dθ .

(6)
Based on this inequality, let the following definitions:

Definition 1. The system is said to be globally passive
with respect to the signals v, z if there exists a non-
negative scalar function V (η) (storage function) and
ρ = 0 such that (6) holds for all t ≥ 0 and all initial
conditions.

Definition 2. The system is said to be globally strictly
passive with respect to the signals v, z if there exists
a nonnegative scalar function V (η) and a nonnegative
scalar function ρ(η), strictly positive for all η 6= 0,
such that (6) holds for all t ≥ 0 and all initial
conditions.

Definition 3. Let a partitioning of the state η in two
parts x and K. The system is said to be globally
x-strictly passive with respect to the signals v, z if
there exists a nonnegative scalar function V (η) and a
nonnegative scalar function ρ(η), strictly positive for
all x 6= 0, such that (6) holds for all t ≥ 0 and all
initial conditions.

All three definitions are global, i.e. they hold for all
initial conditions. The adjective ”global” is eluded in
the remaining to alleviate the text.

All passivity conditions imply system’s stability. Ad-
ditionally, strict passivity implies asymptotic stability
and x-strict passivity implies that for zero inputs v, the
part of the state x converges to zero.

Theorem 1. The closed-loop system (1) with static
feedback u = Fy + v is strictly passive with respect
to the signals v, z = Gy + Dv if and only if there
exist a symmetric positive-definite matrix P > 0 and
a positive scalar ε > 0 such that the following LMI
conditions hold:[

AT (F )P + PA(F ) PB

BT P 0

]
≤

[
−ε1 CT GT

GC D + DT

]
(7)

where A(F ) = A + BFC.

Proof : The theorem corresponds to the positive-real
lemma (Boyd et al., 1994) applied to the closed-loop
system ẋ = A(F )x + Bv, z = GCx + Dv. It is
also an LMI version of the SPR conditions recalled in
(Ioannou and Sun, 1996). �

Note that if D = 0, the inequality (7) become that of
(Fradkov, 2003)

AT (F )P + PA(F ) ≤ −ε1 , PB = CT GT .

Any robustness tests based on this last result have the
disadvantage that the B and C matrices need to be
exactly known. Indeed, except for very special situ-
ations, the equality constraint PB = CT GT is im-
possible to maintain even when assuming parameter
dependent matrices P . Hence, the feed-through gain
D is an opportunity for producing robustness results
with respect to uncertain systems with uncertainties
affecting B and C.



Theorem 2. If there exists a positive scalar ε > 0, two
matrices F , D, and three symmetric positive-definite
matrices P > 0, R > 0, T > 0 such that the
following LMI conditions hold[

R CT GT − PB

GC −BT P 1

]
≥ 0 (8)[

T FT

F 1

]
≥ 0 , Tr(T ) ≤ γ (9)[

L PB − CT GT

BT P −GC −D −DT

]
≤ 0 (10)

where

L = AT P + PA + βγCT C + ε1
+CT (GT F + FT G)C + R ,

then both control laws u = Fy + v and (3), x-
strictly passify the system with respect to the signals
v, z = Gy + Dv.

Proof : First, prove the result for the static feed-
back control. Pre and post multiply inequality (8) by[
1 CT FT

]
and by its transpose respectively to get:

CT (GT F + FT G)C + R

≥ PBFC + CT FT BT P − CT FT FC .

Due to this inequality, (10) implies that[
L̂ PB − CT GT

BT P −D −DT

]
≤ 0 (11)

where

L̂ = AT (F )P + PA(F ) + ε1
−CT (FT F − βγ1)C .

A Schur complement argument on (9) gives that
Tr(FT F ) ≤ Tr(T ) ≤ γ. It implies that FT F ≤ γ1.
As β > 1 one gets FT F − βγ1 ≤ 0. The inequality
(11) therefore implies that of Theorem 1 which ends
this part of the proof.

Now, prove the result for the adaptive control law. Let
any Hermitian positive definite matrix Γ > 0 and let
the output-feedback law (3). Consider the following
storage function

V (η) =
1
2
xT Px +

1
2

Tr
(
(K − F )Γ−1(K − F )T

)
.

(12)
Along the trajectories of (1) with the control law (3)
the derivatives of V (η) write

V̇ (η) = xT P (Ax + BKy + Bv)
+Tr

(
K̇Γ−1(K − F )T

)
.

Pre and post multiply the matrix inequality (10) by(
xT vT

)
and its transpose respectively, to get

2xT P (Ax + Bv) ≤ 2zT v − εxT x− xT Rx

−2yT FT Gy − βγyT y .

Pre and post multiply (8) by
(
xT yT KT

)
and its

transpose respectively to get

2xT PBKy − xT Rx ≤ 2yT KT Gy + yT KT Ky .

Combining these two last inequalities, the derivatives
of V (η) satisfy the inequality

V̇ (η) ≤ zT v − ε

2
xT x + yT (K − F )T Gy

+yT (KT K − βγ1)y
+Tr

(
K̇Γ−1(K − F )T

)
.

Note the following result based on the fact that
Tr(M1M2) = Tr(M2M1):

yT (K − F )T Gy = Tr(yT (K − F )T Gy)
= Tr(GyyT (K − F )T ) .

Therefore, replacing K̇ by its value, one obtains

V̇ (η) ≤ zT v − ε

2
xT x + yT (KT K − βγ1)y

−Tr
(
φβ,γ(K)(K − F )T

)
.

The last quantity is negative due to Lemma 1. More-
over, Lemma 2 guarantees that Tr(KT K) ≤ βγ and
hence KT K−βγ1 ≤ 0. Taking the integral over time
of V̇ (η) on finally gets (6) with ρ(η) = 1

2εxT x which
concludes the proof. �

4. GUARANTEED ROBUSTNESS

This section is aimed at demonstrating that the LMI
conditions derived upper allow to produce robustness
results. The uncertain system Σ(∆) of (1) is assumed
of polytopic type. The dependency with respect to the
uncertain parameters ∆ = ( ζ1 , . . . , ζN ) is affine
such that[

A(∆) B(∆)
C(∆) 0

]
=

N∑
i=1

ζi

[
Ai Bi

Ci 0

]
ζi ≥ 0 ,

N∑
i=1

ζi = 1

where the Ai, Bi and Ci matrices define the vertices
of the polytope.

Theorem 3. If there exists two matrices H1 and H2

and 6N elements Pi > 0, εi > 0, Fi, Di, Ri > 0,
Ti > 0 such that the following LMI conditions hold
for all i = 1 . . . N Ri CT

i GT Pi

GCi 1 0
Pi 0 0

+H1

 0
BT

i

1

T

+

 0
BT

i

1

HT
1 ≥ 0

(13)[
Ti FT

i

Fi 1

]
≥ 0 , Tr(Ti) ≤ γ (14)

L̃i +H2


AT

i CT
i

BT
i 0

−1 0
0 −1


T

+


AT

i CT
i

BT
i 0

−1 0
0 −1

HT
2 ≤ 0 (15)

where L̃i =
Ri + εi −CT

i GT Pi 0
−GCi −Di −DT

i 0 0
Pi 0 0 0
0 0 0 βγ1 + FT

i G + GT Fi





then both control laws u = F (∆)y + v and (3), x-
strictly passify the system with respect to the signals
v, z = Gy + D(∆)v where F (∆) =

∑N
i=1 ζiFi and

D(∆) =
∑N

i=1 ζiDi.

Proof : Define P (∆) =
∑N

i=1 ζiPi, ε(∆) =∑N
i=1 ζiεi, R(∆) =

∑N
i=1 ζiRi and T (∆) =∑N

i=1 ζiTi. Note that the LMIs (13), (14) and (15)
are all linear with respect to the vertex matrices (with
indices i). Therefore if the LMIs hold for all vertices
then they also hold for all the elements of their convex
hull. Denote (13-∆), (14-∆) and (14-∆) the obtained
parameter-dependent inequalities. Note that (14-∆) is
exactly the parameter-dependent version of (9). Pre
and post multiply (13-∆) by[

1 0 0
0 1 BT (∆)

]
and its transpose respectively. The operation elimi-
nates the slack variable H1 and the result happens to
be exactly the parameter-dependent version of (8). Pre
and post multiply (15-∆) by[

1 0 AT (∆) CT (∆)
0 1 BT (∆) 0

]
and its transpose respectively. The operation elimi-
nates the slack variable H2 and the result happens to
be exactly the parameter-dependent version of (10).
Hence, it is shown that the conditions of Theorem 2
hold for all admissible uncertainties, which concludes
the proof. �

Some remarks about the result:

• To apply the control law u = F (∆)y + v it is
needed to measure the uncertain parameters or at
least to have an estimate of these. This is not the
case for the adaptive control law (3).

• The control laws make the closed-loop passive
with respect to a parameter-dependent output
signal z = Gy + D(∆)v. If, for some backstep-
ping design procedure for example, the output
signal z is needed to be reconstructed exactly
whatever the uncertain parameters, then the LMI
conditions may be solved for a unique matrix D
by constraining Di = D identical for all vertices.

• Note that if the LMI conditions hold for two
different sets of vertices then the adaptive con-
trol law (3) proves to passify the system for the
union of the two convex hulls. A gain scheduling
strategy of the type u = F (∆)y+v would in this
case be even more complex to perform because
it would need to switch form one polytopic de-
scription of F (∆) to another depending on the
convex hull in which the parameters lie.

5. EXAMPLE

Let the following data[
A(∆) B(∆)

]
=

0 1 0 0 0
0 0 1 0 0
0 12− 7.5δ1 −0.6 + 0.7δ1 5− 4.5δ1 0
0 0 0 −20 + δ2 20− δ2


C(∆) =

 1 2 0 0
0 1 2 0
0 0 0 1 + 0.1δ2

 , G =
[
400 300 200

]
where δ2 ∈ [ 0 2.5 ] and δ1 ≥ −1. The objective is
to prove closed-loop stability for the largest interval
on δ1. The tests are made considering γ = 10 and
β = 2. The adopted procedure is to check whether the
LMIs of Theorem 3 are feasible for various intervals.
The results are given in Table 1. For some intervals the
LMIs are found infeasible although the following tests
prove the existence of some solution to the control
problem. This illustrates that the LMI conditions are
only sufficient and that the conservatism is reduced
as the uncertainty set is reduced. Globally, taking the
union of all feasible intervals, allows to conclude that
the adaptive control law (3) is valid for the entire
uncertainty set (δ1, δ2) ∈ [ −1 0.722 ]× [ 0 2.5 ].

Table 1. LMI tests for δ2 ∈ [ 0 2.5 ]

δ1 result
[ −1 0.7 ] feasible
[ −1 0.72 ] infeasible
[ 0.7 0.72 ] feasible
[ 0.7 0.73 ] infeasible

[ 0.72 0.722 ] feasible
0.723 infeasible

To illustrate the impact of the uncertainties on the
B and C matrices, the same test is performed while
assuming δ2 = 0. The results are given in Table 2.

Table 2. LMI tests for δ2 = 0

δ1 result
[ −1 0.82 ] feasible
[ −1 0.83 ] infeasible
[ 0.8 0.836 ] feasible

0.837 infeasible

The numerical burden of the LMI problems solved in
this example is characterized by 240 scalar decision
variables and 121 rows in the LMI constraints. The
latest version of SeDuMi (Sturm, 1999) (SeDuMi 1.1
available at http://sedumi.mcmaster.ca/) is
used along with the parser YALMIP (Löfberg, 2004).
The computation time of each individual LMI problem
is less than 0.4 seconds (Linux PC computer with i686
processor and 2GB memory). No numerical problems
are encountered.

To illustrate the efficiency of the adaptive control
law, some simulations are performed. Three parameter
configurations are tested and in each case the mea-
surement output y(t) and the control gains K(t) are
plotted. Figures 2, 3 and 4 correspond respectively



to the configurations (δ1 = −1, δ2 = 2.5), (δ1 =
0.722, δ2 = 0) and (δ1 = 0.722, δ2 = 2.5). In all ex-
periments initial conditions are zero and a disturbance
noise is applied on the measurements. This noise is a
random step modified every 20 seconds.

Figure 2. y(t) and K(t) for (δ1 = −1, δ2 = 2.5)

Figure 3. y(t) and K(t) for (δ1 = 0.722, δ2 = 0)

Figure 4. y(t) and K(t) for (δ1 = 0.722, δ2 = 2.5)

For the values (δ1, δ2) in the uncertainty set the
closed-loop is stable as expected, but the dynamics
are not all identical. The convergence rate is increased
and bigger oscillations are observed when taking large
values of the uncertainties.

Conservatism of the LMI conditions can be observed
when performing simulations for values outside the
proved admissible domain. For example, the choice
(δ1 = 0.85, δ2 = 0) gives a stable (highly oscillating)
closed-loop indicating that the infeasibility given for
δ1 = 0.837 in Table 2 does not imply instability.
For (δ1 = 0.86, δ2 = 0) the closed-loop is unstable
(diverges).

6. CONCLUSIONS

New LMI based results are provided for proving ro-
bust passification via direct passification-based adap-
tive control in the case of uncertain polytopic LTI
systems. The efficiency of the result is illustrated on an
example. Nevertheless, many issues remain to explore.
One of which is to consider other uncertain representa-
tions such as LFT modeling as it is done in (Peaucelle

et al., 2006). Other open questions are the perfor-
mances that may be acheived with such control strate-
gies in terms of perturbation rejection or convergence
rate. But the main issue to be considered is the design
of the G matrix. To illustrate the impact of the choice
of a G matrix, the same LMI constraints as above are
solved for G =

[
40 30 20

]
. In that case the maximal

uncertainty set is (δ1, δ2) ∈ [ −1 0.031 ] × [ 0 2.5 ],
which clearly indicates that the choice of G is a critical
question. As it is done in (Peaucelle et al., 2006) for
the case without feed-through gains, we will investi-
gate in the future some numerical procedure to derive
”good” choices of G matrices. The results will proba-
bly be more complex than pure LMI problems.
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