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Abstract
This article proposes a decision support system based

on a Model Predictive Control (MPC) Scheme in order
to conciliate sustainable short term economic returns
of a set of agricultural production units in a given re-
gion and the its long term environmental sustainability.
The overall coordination is achieved by a decentralized,
adaptive, and hierarchic structure that, on the one end
hand, promotes the long term common good by approx-
imating the solution to an infinite horizon optimal con-
trol problem, and, on the other hand, provides bounds
on the usage of agro-chemical indicators to each one of
the production units. This is a very complex challenge
and this work is a preliminary effort with emphasis on
the problem formulation in a simple context. More pre-
cisely, two production units are modeled and an MPC
based coordinator to define the production factors for
each production unit are considered. In this process,
the maximum principle of Pontryagin plays a key role
in formulating the dynamics to be taken into account
by the coordinator.
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1 Introduction
Optimal control has been increasingly regarded to pro-

vide the kernel for decision support systems for the
management and control of production factors in agri-
culture. In [Lobo Pereira et al., 2013], several pertinent
issues are presented on the basis of a selected state-of-
the-art. The motivation is huge: there is a clear percep-
tion of the difficulty in meeting the future food needs
on earth without preserving the essential environmen-
tal equilibrium, [Farzin, 2008]. However, data gather-
ing processes, information processing, computational
capabilities, and control theory have been growing in

sophistication and power at a very fast pace, thus, lay-
ing promising perspectives of handling of huge com-
plexity that these problems usually entail.
In this article, we propose a systematic approach to

design a coordination control scheme to support the
coordination of the management of multiple farms in
a given environment that, while seeking to maximize
their self short term economic returns, impose con-
straints on their production factors to ensure a fair con-
tribution of each one of them to the long term environ-
mental sustainability. Of course, this goal is extremely
ambitious, and so we will focus on the MPC coordina-
tion mechanism and in investigating its properties by
restricting ourselves to a simple scenario of two farms
under very simple assumptions in terms of the number
of variables that intervene in the process. The key goal
is to build a basis on which future - more realistic - de-
velopments will take place to overcome the achievable
performance of the ones currently available for this pur-
pose.
An overview of the literature shows a huge variety of

problems whose complexity varies widely. This variety
concerns: (i) specification of the scope of the problem,
and (ii) the problem specificities once its scope is de-
fined. In the later, the modeling of wealth of dynamics
and constraints so that the essentially relevant features
are captured and, at the same time, the computational
tractability is ensured, and specification of performance
functionals and time horizons to be considered are key
challenges. In what concerns the former, the extremely
vast array of highly intertwined contexts that can be
considered - economics, environment, climate, ecol-
ogy, natural resources (notably, water and soil), spatial
(from farm level to a region or country) and time scales
(from short horizon of a few production cycles to long
horizon returns). In order to deal with the complexity
for either concentrated or distributed control and deci-
sion problem formulations, researchers have resorted
to the specification of architectures enabling the or-
ganization of complex systems into multiple interact-



ing monolithic simpler subsystems. However, to the
best of our knowledge, there is no approach that in-
tegrates in one framework a decentralized structure of
independent - possibly conflicting -decision makers -
seeking maximal short term returns, and, an optimized
and, simultaneously, “fair” global (not necessarily cen-
tralized) procedure that establishes production factors
quotas for each individual decision-maker so that all
cooperate for the common good of a sustainable envi-
ronment in the medium to the long term.
The structure of this article is as follows. In the next

section 2, we will provide a brief overview of the per-
tinent state-of-the-art. In section 3, the model of a pro-
duction unit will be discussed in detail. This will be
a simplified model in that it includes only the effects
in the crop growth of small number of key production
factors, notably, fertilizers, pesticides, and biological
control. The optimal control problem for each produc-
tion unit will be formulated and the characterization of
its optimal strategy via the Maximum Principle of Pon-
tryagin will be given in section 3. Then, in the ensu-
ing section, 4, we will present the coordinating MPC
scheme, including the assumptions under which it is
formulated, being the derivation of its dynamics a key
issue. This article is closed with some conclusions.

2 Brief State-of-the-art
In [Gorddard et al., 1995; Jones and Cacho, 2000;

Manalil et al., 2011; Stiegelmeier et al., 2012], op-
timal control problems with an increasing degree of
sophistication have been considered in order to find
the combination of chemical and non-chemical control
strategies optimizing the long term economic trade-off
between crop yield profits, herbicide costs, and long
term adverse effects of weed resistance. In particular,
one should point out the effect of weeds resistance to
herbicides which, in spite of the modeling difficulties,
proved to be an important factor in the problem formu-
lation. Various techniques, such as nonlinear program-
ming, Pontryagin Maximum Principle and dynamic
programming, have been used to solve the formulated
optimal control problems. The general conclusion of
these studies is that a better performance is achieved
if a wider range of control methods are available and
that, even without explicitly considering environmental
factors in the problem, the optimal solutions are envi-
ronmentally friendlier than the conventional ones. The
optimal control of pests has been investigated in a num-
ber of articles, notably [Wetzstein et al., 1985; Rafikov
and Balthazar, 2005]. Besides the economic issues ad-
dressed in the optimal weed control problems, now, is-
sues concerning long term ecosystem equilibrium have
been considered. Moreover, optimal strategies seeking
long term environmental equilibria have been designed
for problems with multiple pest species and by combin-
ing the use of fertilizers and pesticides. The Pontryagin
Maximum Principle and dynamic programming tech-
niques, [Pontryagin et al., 1962; Clarke et al., 1998;

Arutyunov, 2000] have been used to solve these prob-
lems. In [Qi, 2010], a systemic approach is adopted
in order to formulate optimization and optimal control
problems to optimize the economic valuable botani-
cal yield components based on a functional-structural
plant growth model in terms of the source-sink dynam-
ics. This model encompasses all pertinent ingredients
which encompass both botanical, and ecological yield
components, and all other environmental factors. A
key challenge here is to ensure the compatibility of this
model with the plant model in terms of spatial and tem-
poral scales. In [Huhtala and Laukkanen, 2011], opti-
mal control modeling was used to analyze how pub-
lic resources should be allocated to small-scale water
protection efforts in agriculture or, alternatively, to in-
vestments in large-scale waste water treatment plants to
control point source loads. In [Risbey et al., 2009], an
analysis is performed in the context of the Australian
agriculture to show the need of increasingly adaptive
policies to take into account the evolution of percep-
tions of the state of the system and of the intervening
processes in the multiple spatial and temporal scales,
as well as the increased role of environment changes
for which climate variability plays a prominent role.
Finally, a much more general context is considered in
[Farzin, 2008] where it is argued that the optimal devel-
opment path in the sense of the maximin criterion of in-
tergenerational justice is too demanding to be practical
and too costly for the economically less competitive.
This calls for a policy development following an op-
timal growth approach while encompassing measures
to mitigate the intergenerational and intra-generational
welfare inequalities.
It is clear from the above that a general abstract control

architecture satisfies some of the key identified require-
ments have been considered, but the articulation of the
above discussed conflicting short term and of long term
goals is clearly missing. This is the gap that this work
intends to mitigate.

3 Production Unit Optimal Management
In this section we discuss three issues corresponding

to the three subsections: Production dynamics model-
ing, optimal control formulation, and the characteriza-
tion of the optimal control strategy via the maximum
principle.

3.1 Dynamics
We consider a model that is simple enough to be

tractable and, at the same time, captures sufficiently re-
alistic features of a real life context of the intra-year
model of the product growth required to forecast the
prospective final production inferred from the current
“health” of the plant. Let α be a superindex specifying
the production unit. The state of the system xα ∈ R4

is specified by the following variables:

xα1 - Quantity of primary products, which is con-
sidered of dimension 1.



xα2 - Quantity of collateral products inherent to bi-
ological control, which is also considered of di-
mension 1.
xα3 - Quantity of weeds which, as mentioned above
are considered endemic.
xα4 - “Distance” of the environment from the sus-
tainability set S, that is xα4 = dS(w)

where, here, w is the “state” of the environment which,
for the purpose at hand, can be given by a measure of
the health of the soil in terms of timely natural evo-
lution of all soil ecosystems to a sustainable equilib-
rium, and S is the set of all values of w for which all
soil ecosystems naturally evolve to a sustainable equi-
librium within a certain time interval. This is defined
to ensure stability and robustness to weather, and some
climate changes.
A number of important simplifications are being con-

sidered: agrochemical resistance of pests is neglected;
the use of the “artificial” variable w; and the health of
the state does not affect x2 and x3 which are considered
extremely well adapted to poor soils.
Before, going into the dynamic of the model, let us

dwell on the important point of representing the evo-
lution (i.e., time derivative) of the projected intra-year
final primary production x1, given by the plant health
(expected size, leaves color, etc.). The game of the
farmer consists in, at each point in time, selecting a
strategy yielding maximal profit by the end of the pro-
duction section (harvest time), by taking into consid-
eration the current health status of the crop, besides
other factors such as soil health and forecast of devi-
ations from the normal weather pattern. This requires
an intra-year model of the crop status. Without any de-
viation from the normal external conditions (abnormal
weather patterns, unbalanced soil, plagues, etc.) the
plants of the crop have different needs of nutrients, wa-
ter, and sun exposure needs, at different stages of de-
velopment.
For the sake of simplicity of the illustration but with-

out sacrificing the essential idea, let us consider a
model of crop plant with a growth profile with three
different piecewise rates: γi(·), for i = 1, 2, 3. That
is, we have ẋα1 = hα1 (t) where

hα1 (t) =

3∑
i=1

γ1
i (t)χ[ti−1,ti)(t)

where t0 = 0, 0 < t1 < t2 < t3, t3 = 1, and χA(t)
is the indicator function of A. We may further sim-
plify the dynamics by considering the coefficients γi’s
constant in their subinterval, and typically satisfying
γ1 < γ3 < γ2. Here and heretofore, the production
year is normalized for the interval [0, 1].
The controls available to steer the system uα =
col(uα1 , u

α
2 , u

α
3 ) is specified by the following variables:

uα1 - Quantity of fertilizers to improve productiv-
ity;

uα2 - Quantity of agrochemical o fight the growth
of weeds;
uα3 - Size of a selected biological population (bio-
logical control) introduced to boost the production
of the system.

These controls are constrained as follows: uαi (t) ∈
[0, Ūαi ] for all t ∈ τ , i = 1, 2, 3, being Ūαi the max-
imum physically allowable value of the control i. In
compact form, the dynamics of the production unit α
in isolation satisfies the following dynamics within the
production cycle τ = [0, 1]:

ẋα = hα +A(xα)xα +B(xα)uα,

where uα=col(uα1 , u
α
2 , u

α
3 ), xα=col(xα1 , x

α
2 , x

α
3 , x

α
4 ),

and hα=col(hα1 , 0, 0, 0),

A(xα) =


0 −a12 −a13 −a14x

α
1

−a21 a22 −a23 0
−a31 −a32 a33 0
a41 −a42 0 0

 , and

B(xα) =


b11 −b12 0
b21 −b22 b23

b31 −b32(xα4 ) 0
b41 b42 0

 .

Several remarks are in order: First, note that this model
is very close to be linear. This may greatly simplify the
analysis. The coefficient above should be time variant
in order to reflect seasonal effects. However, if seasonal
variations are small or the production in question is not
very sensitive to seasonal variations, then we may con-
sider them constant. They also should depend on the
state of the environment as it is somewhat unrealistic
to consider otherwise. However, the analysis is greatly
simplified with this assumption. Finally, note that the
variables x2 and x3 grow very fast - in fact, often, expo-
nentially fast - w.r.t. the main crop making the consid-
eration of impulsive dynamics reasonable, a framework
that we do not exploit here.

3.2 Optimal Production Unit Management Prob-
lem

Now, we consider a simplified - but still realistic - ver-
sion of the unit production intra-year optimal control
problem. Let us assume that: (i)The system is time in-
variant and there is only one production cycle per year.
This means that the normalized time interval [0, 1] can
be adopted for the problem formulation; (ii) The costs
incurred in the crop seeds and biological control are
made at the beginning of each period; (iii) The costs of
agrochemicals and biologic control are constant; (iv)
The financial costs are constant; (iv) There exists up-
per bounds on the instantaneous values of the controls
and (upper or lower) bounds for their integral over the
whole production year.
The profit function Jα,j(x1(0), x, u) for the produc-



tion unit is given by

c1x
α
1 (1) + c2x

α
2 (1)− c3xα1 (0)

−
∫ 1

0

[c4u
α
1 (t) + c5u

α
2 (t) + c6u

α
3 (t)] dt.

Here, xα1 (0) is the amount of biomass associated with
the seeds of the main crop. Given the finite fixed area
of land available, it may be assumed that there are con-
stants γα1 and γα2 such that the constraint γα1 x

α
1 (0) +

γα2
∫ 1

0
uα3 (t)dt ≤ Kα holds. Then, the optimal con-

trol to be solved by production unit α can be stated as
follows:

(Pα,j) Min. −Jα,j(xα1 (0), xα(·), uα(·))
s.t. ẋα(t) = hα(t) +A(xα(t))xα(t)

+B(xα(t))uα(t)

uα(t) ∈ [0, Ūα1 ]× [0, Ūα2 ]× [0, Ūα3 ]∫ 1

0

uαi (t)dt ≤ Uα,ji , i = 1, 2∫ 1

0

uα3 (t)dt ≥ Uα,j3

γα1 x
α
1 (0) + γα2

∫ 1

0

uα3 (t)dt ≤ Kα

xα(0) ≥ 0

The quantities Uα,ji , i = 1, 2, 3, j = 1, . . . N , are de-
fined for each period by the supervisory layer in charge
of ensuring the long term environment sustainability.
From the above, it is obviously natural to assume that
Ūαi > Uαi , for i = 1, 2, 3. The supervisory layer
should ensure that the data is such that, at the optimum
(the optimum value of x is denoted by “hat”, i.e., x̂),
the inequality

Jα,j(x̂α1 (0), x̂α(·), ûα(·)) ≥ (r1 + rα2 )Iα,j

holds. Here, Iα,j is the total investment in the produc-
tion unit α in the period j, rα,j2 is financial costs rate
incurred, and r1 is the reasonable return on the invest-
ment.
We will further “normalize” the problem by consider-

ing a new variable yα ∈ R3 defined by yα(0) = 0, and
ẏα(t) = uα(t), the problem - with the simplification
above - becomes fully linear, albeit with box-type con-
trol constraints, and endpoint state constraints. That is,

(P̄α,j) Min. c̄Txα(1) + d̄T y(1) + ēTxα(0)

s.t. ẋα = hα +A(xα)xα +B(xα)uα,

ẏα = uα, yα(0) = 0, xα(0) ≥ 0

uα(t) ∈ [0, Ūα1 ]× [0, Ūα2 ]× [0, Ūα3 ]

yαi (1) ≤ Uα,ji , i = 1, 2

yα3 (1) ≥ Uα,j3

γα1 x
α
1 (0) + γα2 y

α
3 (1) ≤ Kα.

3.3 Application of the Maximum Principle
In order to pursue with the analysis of the Maximum

Principle relations in order to determine the solution
to this problem, let us consider a further simplifica-
tion: The matrices A and B do not depend on xα, i.e.,
A(xα) = A and B(xα) = B. For some practical sce-
narios, this is not a significant loss of generality. The
extra generality afforded by the previous model would
imply a much more cumbersome analysis that would
make it more difficult to grasp the purpose of the arti-
cle.
The Maximum Principle states that, for the optimal

control process (x, y, u), there exists a multiplier (p, q)
that satisfies the adjoint system −ṗT = pTA, −q̇T =
0, with the transversality conditions

(
−(pT (1), qT (1)), (pT (0), qT (0))

)
∈ ∇J ((x(1), y(1)), (x(0), y(0)))

+NL
C ((x(1), y(1)), (x(0), y(0))) ,

where u maximizes the Pontryagin funtion v →
H(x, y, p, q, v) = pT (Ax+Bv+h)+qT v [0, 1] almost
everywhere over the set of all feasible controls.
Here,∇J =

(
(c̄T , d̄T ), (ēT , 0)

)
is the gradient of the

cost functional, NL
C is the limiting Normal cone in the

sense of Mordukhovich, C is the joint endpoint state
constraints defined by

{((x(1), y(1)), (x(0), y(0))) : x(0) ≥ 0,

x(1) ∈ R3, y(0) = 0, H̄y(1) ≤ Ū ,
γ̄1x(0) + γ̄2y(1) ≤ Kα},

where H̄ = diag(1, 1,−1), Ū = col(U1, U2,−U3),
γ̄1 = lin(γ1, 0, 0, 0), and γ̄2 = lin(0, 0, γ2).
A few computations and some natural assumptions on

the data leads to the conclusion that

NL
C (z)=∂[{({0},R+

0 × R+
0 × R−

0 ),

({0} × R−
0 × R−

0 × R−
0 ,R

3)}
∪ {a[(0, (0, 0, γ2)), ((γ1, 0, 0, 0), 0)] :a≥0}] .

Thus, from the boundary conditions of the adjoint vari-
able

(
−(pT (1), qT (1)), (pT (0), qT (0))

)
∈
(
(c̄T , d̄T ), (ēT , 0)

)
+NL

C ((x(1), y(1)), (x(0), y(0))) ,

we conclude that, there are numbers p̄0 ∈ R4, q̄0 ∈ R3,
and q̄1 ∈ R3, with

(q̄1, p̄0)∈
(
R+

0 × R+
0 × R−

0 , {0} × R−
0 × {0} × R−

0

)⋃
{α ((0, 0, γ2), (γ1, 0, 0, 0) : α ≥ 0}



satisfying

−p̄T (1) = c̄T

−q̄T (1) = d̄T + q̄1

p̄T (0) = ēT + p̄0

q̄T (0) = q̄0.

Notice that the condition on q(0) is, in fact, absent.

Now, the necessary conditions of optimality can be
written down as follows:
If ((x∗, y∗), u∗) is an optimal control process, then

there are numbers α ≥ 0, p̄0 ∈ R4, and q̄1 ∈ R3 satis-
fying the transversality conditions (we assume that the
problem is normal) and such that u∗ maximizes a.e. in
[0, 1] the map

v → 〈pTB + qT , v〉, ∀v ∈ [0, Ū1]×[0, Ū2]×[0, Ū3]

where the adjoint variables (p, q) satisfies the adjoint
differential equations −ṗT = pTA, −q̇T = 0, with the
boundary conditions −p(1) = c̄, −q(1) = d̄+ q̄T1 , and
p(0) = ē + p̄T0 . This means that −q(t) = d̄ + q̄T1 for
all t ∈ [0, 1].
Notice that, in the absence of singular arcs, the maxi-

mum condition above means that we have, a.e.,

u∗i (t) = 0 if pT (t)bi − (d̄+ q̄T1 )i < 0

u∗i (t) = Ūi if pT (t)bi − (d̄+ q̄T1 )i > 0.

Here, bi is the ith column of the matrix B.

4 The optimal coordination control problem
In order to formulate the basic coordination optimal

control problem, we consider the variables adopted in
the simplified notation. Let Uk = col(Uk1 , U

k
2 , U

k
3 ), be

the bounds for the two agrochemicals and to the bio-
logical control to be used.
The coordination problem consists in computing the

two sequences {Uα,k}Nk=1 and {Uβ,k}Nk=1 solving the
following problem

(Pc) Minimize
N∑
k=1

[πα,k(xα4 (k)− xα4 (k − 1))

+ πβ,k(xβ4 (k)− xβ4 (k − 1))] (1)
subject to

col(x, y)α(k + 1)=F (col(x, y)α(k), Uα,k) (2)

col(x, y)β(k + 1)=F (col(x, y)β(k), Uβ,k) (3)

J(col(x, y)α(k)) ≥ sα,k (4)

J(col(x, y)β(k)) ≥ sβ,k (5)
x4(N) = 0 (6)

where

a) The cost functional (1) to be minimized represents
the accumulated “unfair behavior” of the produc-
tion units in the period. To see this clearly, notice
that each parcel represents the deterioration of the
environment weighted by the profit relative to its

investment given πζ,k =
Jζ,k − sζ,k

Iζ,k
, ζ = α, β.

b) The dynamics (2,3) col(x, y)ζ(k + 1) =
F (col(x, y)ζ(k), Uζ,k), ζ = α, β, are obtained by
solving the optimal control problem (P ζ,k) has a
function of the bounds on the controls, Uζ,k avail-
able to the production unit ζ.

c) The constraints (4,5) are imposed in order to en-
sure the economic sustainability of each produc-
tion unit.

d) The constraint (6), where x4(N) is the weighted

average
Iα,Nxα4 (N) + Iβ,Nxβ4 (N)

Iα,N + Iβ,N
ensures that

the desired convergence to environment sustain-
ability is targeted by the resulting coordination
strategies.

Item b) requires further considerations. The mapping
(2), and (3) are obtained by solving (P̄α,k) and (P̄ β,k),
respectively, as discussed for the production unit α in
the previous section. Since both problems are decou-
pled and identical, we omit the upper-indicesα and β in
the discussion leading to the specification of the map-
ping F that describes the discrete dynamics (2), and
(3). Let us consider ((x∗, y∗), u∗) the optimal control
process for (P̄ ·,k). Clearly, we have x(k+ 1) = x∗(1),
x∗(0) = x(k), y(k + 1) = y∗(1). Thus, the state is
steered from (x̄(k), y(k)) to (x(k + 1), y(k + 1)) by
solving (P̄ ·,k). Thus,

x(k + 1)=eAx̄(k) +

∫ 1

0

eA(1−t)[Bu∗(t) + h(t)]dt,

y(k + 1)=

∫ 1

0

u∗(t)dt,

where u∗ satisfies the maximum condition of the neces-
sary conditions of optimality stated in the previous sec-

tion, the control constraints u∗(t) ∈
3∏
i=1

[0, Ūi] as well

as the constraints y∗i (1) ≤ Uki , i = 1, 2, y∗3(1) ≥ Uk3 ,
and γ1x

∗
1(0) + γ2y

∗
3(1) ≤ K ·.

Notice that the map F has an affine structure. By scal-
ing down the u∗i , i.e. u∗i = Uki ū

∗
i (now, we have that

ū∗i ∈
[
0, Ūi

Uk
i

]
), by noting that

Bu∗(t) =

3∑
i=1

biu
∗
i (t) =

3∑
i=1

biU
k
i ū

∗
i (t),

where bi is the column i of B, and by denoting

Φ1 = eA,



Φk2 = col(Φi,k2 : i = 1, 2, 3) where Φi,k2 =∫ 1

0
eA(1−t)biū

∗
i (t)dt, and

Φ3 =
∫ 1

0
eA(1−t)h(t)dt,

we obtain, by denoting Uk = col(Uki : i = 1, 2, 3), the
discrete dynamics given by

x(k + 1) = F (x̄(k), Uk) = Φ1x(k) + Φk2U
k + Φ3.

Notice that the matrix Φ1, and the vector Φ3 are con-
stant, and the matrix Φk2 depends on the optimal control
obtained in the period k.
A couple of observations are in order which are quite

relevant to facilitate the computation of the solution of
(P̄ ·,k):

1. The initial state x at each sampling time is the op-
timum final state of the previous period, i.e., do we
have x̄(k) = x(k)? If the answer is positive, then
each (P̄ ·,k) is a fixed initial state problem and the
constraint γ1x̄1(k) + γ1y3(k + 1) ≤ K · becomes
much simpler.

2. In order to compute the solution to the optimal
control problem (P̄ ·,k), it is reasonable to assume
yi(k + 1) = Uki , i = 1, 2, 3, and γ1x̄1(k) +
γ2y3(k + 1) = K ·.

5 Conclusions
This article reports a preliminary research effort tar-

geting the design of a decision support system for the
optimal and “fair” management of a number of agri-
cultural productions units seeking to maximize their
own short term economic returns while being subject
to a coordination control ensuring the medium to long
term environment sustainability. This achieved by im-
posing appropriate production quotas which are com-
puted by running an MPC like scheme. In general, this
is a very complex problem and this effort considered
the modeling and the decision making optimal control
problem for a small scale context in order to prove the
concept. Future work will address further refinement
of the problem in order to make it mimic some real-
istic known context, as well as the assessment of the
obtained control and coordination strategies.

Acknowledgements
Fernando Lobo Pereira acknowledges the partial sup-

port of: FCT R&D Unit SYSTEC - POCI-01-0145-
FEDER-006933/SYSTEC funded by ERDF — COM-
PETE2020 — FCT/MEC — PT2020, Project STRIDE
- NORTE-01-0145-FEDER-000033, funded by ERDF
— NORTE 2020, and contract no 02.a03.21.0008 of
the Ministry of Education and Science of the Russian
Federation. Ismael Pena acknowledges the support of
FAPESP grant no 2013/25135-6.

6 Bibliography
References
Arutyunov, A. (2000). Optimality Conditions: Abnor-

mal and Degenerate Problems. Springer, Dordrecht.
Clarke, F., Ledyaev, Y., Stern, C., and Wolenski, P.

(1998). Nonsmooth Analysis and Control Theory.
Springer, New York.

Farzin, Y. (2008). Sustainability, optimality, and devel-
opment policy.

Gorddard, R., Pannell, D., and Hertzler, G. (1995). An
optimal control model for integrated weed manage-
ment under herbicide resistance. Australian Journal
of Agricultural Economics, 39(1):71–87.

Huhtala, A. and Laukkanen, M. (2011). Optimal con-
trol of dynamic point and non-point pollution in a
coastal ecosystem: agricultural abatement versus in-
vestment in waste water treatment plants.

Jones, R. and Cacho, O. (2000). A dynamic optimisa-
tion model of weed control.

Lobo Pereira, F., Fontes, F., Ferreira, M., Pinho, M.,
Oliveira, V., Costa, E., and Silva, G. (2013). An opti-
mal control framework for resources management in
agriculture. Journal of Conference Papers in Mathe-
matics, 36(Art. ID 769598):1–15.

Manalil, S., Busi, R., Renton, M., and Powles, S.
(2011). Rapid evolution of herbicide resistance by
low herbicide dosages. Weed Science, 59(2):210–
217.

Pontryagin, L., Boltyanskiy, V., Gamkrelidze, R., and
Mishchenko, E. (1962). Mathematical Theory of Op-
timal Processes. Interscience Publ., New York.

Qi, R. (2010). Optimization and Optimal Control of
Plant Growth: Application of GreenLab Model for
Decision Aid in Agriculture. PhD thesis, Ecole Cen-
trale des Arts et Manufactures, Ecole Centrale Paris.

Rafikov, M. and Balthazar, J. (2005). Optimal pest con-
trol problem in population dynamics. Computational
& Applied Mathematics, 24(1):65–81.

Risbey, J., Kandlikar, M., Dowlatabadi, H., and Graetz,
D. (2009). Mitigation and Adaptation Strategies for
Global Change, chapter Scale, Context, and Decision
Making in Agricultural Adaptation to Climate Vari-
ability and Change, pages 137–165. Kluwer Aca-
demic Press.

Stiegelmeier, E., Oliveira, V., Silva, G., Karam, D.,
Furlan, M., and Kajino, H. (2012). Herbicide appli-
cation optimization model for weed control using the
resistance dynamics.

Wetzstein, M., Szmedra, P., Musser, W., and Chou, C.
(1985). Optimal agricultural pest management with
multiple species. Northeastern Journal of Agricul-
tural and Resource Economics, 14(1):71–77.


